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I am impressed also, apart from prefabricated examples of black and white

balls in an urn, with how baffling the problem has always been of arriving at

any explicit theory of the empirical confirmation of a synthetic statement.

(Quine 1980, pp. 41–42)
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— 1—
Prologue

Statistical inference is in a mess. As a result of the considerations briefly

sketched in this prologue and discussed at length in the rest of the thesis, not

just some but the vast majority of inferences made by applied statisticians

are seriously questionable. Jokey topics with which deductive logicians

while away an idle hour, like what science would be like if most of our

inferences were wrong, are not funny to philosophers of statistics. Science

probably is like that for us. In the cases in which people’s decisions depend

crucially on statistical inferences — which is primarily in the biomedical

sciences— it seems very likely that most of our decisions are wrong, a state

of affairs which leads to major new dietary recommendations annually, new

“cures for cancer” once a month and so on.

Statisticians would be fixing this situation if only they could agree

on its cause. What is hindering them is nothing merely technical. It is

the absence of rational ways to agree on what counts as a good inference

procedure. We need to do something about this, much more urgently than

we need further work on the details of any particular inference method.

Consequently, this thesis investigates statistical inference primarily by

investigating howwe should evaluate statistical inference procedures. I will

use considerations about the evaluation of statistical inference procedures

to show that there is an important constraint which statistical inference

procedures should be bound by, namely the likelihood principle. This

principle contradicts ways of understanding statistics which philosophers
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of science have been taking for granted, as I will show in the final section

of this prologue. Later in the thesis, I will use the likelihood principle to

suggest that almost everything that applied statisticians currently do is

misguided.

1. EVALUATING INFERENCE PROCEDURES

Statistical inference is the move from beliefs and/or statements about ob-

servations to beliefs and/or statements about what cognitive states and/or

actionswe ought to adopt in regard to hypotheses.1 Since this thesis focuses

on statistical inference, it does not discuss everything that statisticians do

(not even everything they do at work). Firstly, the most important thing

it ignores is what statisticians do before they have observations to work

with. Most of that activity comes under the title experimental design. It is

important to bear in mind throughout this thesis that the methods which

I criticise for being inadequate to the task of inference may be very useful

for experimental design. Secondly, although the problem of inference from

data to hypotheses is the main problem of inference these days, for histor-

ical reasons it is sometimes called the problem of inverse inference, as if it

were a secondary problem. The opposite problem, which is to infer proba-

bilities of data sets from mathematically precise hypotheses, is called direct

inference. Eighteenth- and nineteenth-century mathematics made direct

inference relatively easy, and it has always been relatively straightforward

philosophically, so I will be taking it for granted. Again, the methods I

criticise for being inadequate for inverse inference may be adequate for

1. “And/or” is meant to indicate lack of consensus. As we will see, some say that statistical
inference is only about actions, others that it is only about beliefs, and so on.
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direct inference. The take-home message of this paragraph is that I will

only be discussing inference from data to hypotheses, and when a method

fails to be good for that I will be calling it a bad method, even if it is good

for something else.

There is one unsolved problem about statistical inference which is

both more important and more urgent than any other. The problem is how

to evaluate statistical inference procedures.2 Experts in this area cannot

agree, even roughly, on what makes one statistical inference procedure

better than another, as the survey of theories of statistical inference which

makes up the bulk of Part I of the thesis will show.

It is instructive to compare statistical inference to deductive inference.

Everyone agrees that a sine qua non of deductive inference procedures is

that they should lead from true premises to true conclusions. There are

many ambiguities in that statement, leading to active disagreements about

modal logics, relevant logics, higher-order logics, paraconsistent logics,

intuitionistic logics and so on, but — and this is a big but — deductive

logic is being successfully developed and applied even in the absence of

agreement on these questions. This is possible because the basic idea of

deductive inference as truth-preserving means more or less the same thing

to everybody.

In contrast, there is no equivalent agreed sine qua non for statistical

inference. Statistical inference procedures cannot be evaluated by whether

they lead from truths to truths, because it is in the very nature of statistical

inference that they do not . . . at least, unlike deductive inference, they

do not lead from truths about the first-order subject matter of scientific

2. Exactly what I mean by “inference procedures” is explained in chapter 2. Almost any
algorithm which makes probabilistic inferences from data to hypotheses will qualify.
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investigation (objects and events) to other truths about that subject matter.

They may lead from truths about the subject matter to truths about what

we ought to believe about relative frequencies or some such; but what we

ought to believe is not something that can ever be verified in the direct

way that first-order claims can (sometimes) be verified.

There is a similar contrast between the problems of simple induction,

such as Goodman’s (1983) paradox, and the problems of statistical infer-

ence.3 Simple induction asks questions like, “1, 1, 1, 1, 1: what next?” A

plausible answer is “1”, and this answer can be tested by subsequent ex-

perience. The statistical problem of induction, in contrast, asks questions

like, “1.1, 0.9, 1.0, 1.1, 1.1: what next?” There is no first-order answer to

this; by which I mean that there is no answer such as “1.1”. The answer

has to be something more like “Probably something in the region of 1.1.”

This answer can be explicated in various ways but clearly, however it is

cashed out, it is not something that can be tested directly by subsequent

experience. (As Romeyn 2005, p. 10, puts the point, “statistical hypotheses

cannot be tested with finite means”.) Any possible test is dependent on

a theory of statistical inference. Consequently, the ability of a statistical

inference procedure to pass such tests cannot (by itself) justify the theory

behind the procedure, on pain of circularity.

In the next two sections, I will consider two different things which

we might want to do when we evaluate a statistical inference procedure:

we might want to count the number of times (in different situations) it

is right, on the assumption that some hypothesis or other is true; or we

might want to compare what it says about various hypotheses in the same

3. See also (Teller 1969) for a plausible but arguably incomplete attempt to solve Good-
man’s paradox using Bayesian statistical inference.
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situation. Then I will use an example to discuss the conflict between these

two modes of evaluation.

ONE OPTION: FREQUENTISM

One option is to evaluate statistical inference procedures by seeing how

often an inference procedure leads from truths to truths. This method

for evaluating statistical inference procedures is prima facie closest to

the truth-preservation test which we use to evaluate deductive inference

procedures.

This might mean that we should work out the number of times we

should expect a given inference procedure to get the right answer, in

some hypothetical set of test cases. If we do this in the same way we

would for a deductive inference procedure, we will start with some known

true premises and see how often the inference procedure infers true (and

relevant) conclusions from them. Now, before we can embark on such

an evaluation, we have to decide what types of conclusions we want the

statistical inference procedure to infer. Perhaps, if it is going to be a useful

procedure, we want it to infer some general scientific hypotheses. We

might then evaluate it by asking how often it correctly infers the truth

of those hypotheses, given as premises some other general hypotheses

and some randomly varying observational data. We can imagine feeding

into the inference procedure random subsets of all the possible pieces of

observational data, and we can calculate the proportion of those subsets on

which it gets the right answer.4

4. Such a method of evaluation requires the inference procedure to produce a determi-
nately true or false answer, which might or might not be a desideratum for the procedure
independently of the need to evaluate the procedure.
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This method is referred to as the “frequentist” or “error-rate” method.

Unfortunately, both terms are misnomers. I will explain why in chapter

4; see also chapter 2 for an alternative meaning of the word “Frequentist”

and for the reason why I give it a captial letter.

I hope it seems plausible that the Frequentist method might be the

bestway to evaluate statistical procedures, as almost all applied statisticians

currently take it to be, because Frequentism will be the foil for most of

my arguments. In particular, one of the main goals of this thesis, and an

essential preliminary to arguing for the likelihood principle, is to show

that despite its popularity the Frequentist method is not a sensible way to

evaluate statistical procedures.

ANOTHER OPTION: FACTUALISM

It might even seem as though the Frequentist method were the only way of

finding something analogous to the logician’s method for testing deductive

inferences. In order to see whether it is, consider what information is

available to us when we are getting ready to use a statistical inference

procedure. Some of our premises at that time will be general statements

about the way the world is, of the nature of scientific hypotheses. The rest

of our premises will be statements about specific observed phenomena.

The distinction between these two — fuzzy though it inevitably is —

is fundamental to stating the nature of statistical inference. The most

common epistemological goal of science is to make inferences from the

latter to the former, from observations to hypotheses. (Not that this is the

only possible goal of science.) And in order for this to be statistical inference,

none of the hypotheses must be deductively entailed by the premises. In
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other words, when we need a statistical inference procedure it is because

we have collected some data and we want to infer something from the data

about some hypotheses.

What we want to know in such a situation is how often our candidate

statistical inference procedure will allow us to infer truths, and we want

to calculate this by comparing its performance to the performance of other

possible procedures in the same situation, with the same data as part of

our premises. The idea that this is what we want to know when we are

evaluating statistical procedures has no name. I will call it the factual

theory, because it ignores counterfactual statements about observations

we haven’t made. (More on such statements later.) I will also refer to

factualism, meaning the doctrine that we should always apply the factual

theory when doing statistical inference.5

The factual method is the one recommended by Bayesians, and it is

the only one compatible with the likelihood principle (defined at the end

of this chapter and again, more carefully, in chapter 8). Indeed, when made

precise in the most natural way it turns out to be logically equivalent to

the likelihood principle, as I will show.

If the Frequentist method agreed with the factualist method then we

would have a large constituency of people who agreed on how to evaluate

statistical inference procedures. Perhaps they would be right, and if so we

could pack up and go home. But no: the Frequentist method is deeply

incompatible with the factualist method. The Frequentist method is to

5. Factualism is a normative methodological doctrine. It is not a metaphysical doctrine;
it must not be confused with (for example) actualism. To see clearly the difference between
factualism and actualism, note that unless the factualist calculates the result of every possible
alternative procedure, he may not be trading in observations he might make but has not, but
he is still trading in calculations he might make but hasn’t: hence, factualism does not rule
out the use of counterfactuals. What factualism rules out is any dependence of statistical
conclusions on counterfactuals whose antecedents are false observation statements.
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evaluate the performance of an inference procedure only on (functions of

subsets of) all the possible pieces of observational data, while the factualist

method is to evaluate its performance only on the data actually observed.

Total conflict.

STATISTICAL INFERENCE IS IN TROUBLE

What we have just discovered is that the very concept of “the performance

of an inference procedure” is a completely different animal according to

two competing theories of how to evaluate inference procedures. We are

not used to this situation— it can arise in non-probabilistic inference, when

competing ways of measuring success are on offer, but it rarely does —

and so we do not always notice it; but we are hostage to it all the time in

statistical inference.

The comparison I have been making with methods of deductive rea-

soning might seem to suggest a nice solution to the problem of how to

evaluate statistical methods. In deductive reasoning, as I’vementioned, one

wants to go from true statements to true statements; and, helpfully, the

meaning of “true”, although contentious, is to some extent a separate issue

from the evaluation of logical procedures; and hence logicians of differ-

ing persuasions can often agree that a particular inference does or doesn’t

preserve truth. In statistical methods, one wants to go not from true

statements to true (first-order) statements but from probable statements

to probable (first-order) statements. Statisticians of differing schools often

fail to agree whether a particular inference preserves probability. But if

they were at least to agree that it should , then that in itself would seem

to rule out many methods of statistical inference. In particular, it would
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seem to rule out methods which restrict attention to a single experiment in

isolation, because we know that doing that can lead from probable premises

to improbable conclusions. (This is because the conclusions drawn from an

experiment in isolation can be rendered improbable by matters extraneous

to that experiment — by, for example, a second, larger experiment.)

Sadly, this line of argument does not work. The problemwith it is that

all methods of statistical inference sometimes lead from the probable to the

improbable. We might amend the principle we’re considering, to say that

a good method of reasoning is likely to generate probable statements from

probable statements. But then the principle becomes ambiguous between

(at least!) the Frequentist and factualist interpretations described above,

which interpret “likely” differently: we are back in the impasse we have

been trying to escape.

If I can clarify this problem and give a clear justification for a solution,

even though my solution is only partial and only partially original, I will

have achieved something.

2. A SIMPLE EXAMPLE

Although the questions I am asking are entirely scientific questions, at the

level of abstraction at which I will be dealing with them very few of the

details of applied science will matter. Some of the details of applied science

will matter in various places, especially in the final chapter, but most of

the minutiae of applied statistics will be irrelevant. It is therefore possible

to conduct most of the discussion I wish to conduct in terms of a simple

example table of numbers, which I construct as follows.
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Suppose we have precise, mutually exclusive probabilistic hypotheses

which tell us the probabilities of various possible observations. Suppose

further that we observe one of the possible observations that our hypothe-

ses give probabilities for. No doubt this sounds like an ideal situation.

Let’s make it even more ideal by making there be only finite numbers of

hypotheses and possible observations. Then we can draw a table:

actual possible possible
observation observation 1 observation 2 . . .

hypothesis I p1,a p1,1 p1,2 . . .

hypothesis II p2,a p2,1 p2,2 . . .

...
...

...
...

. . .

Table 0

Now let’s get concrete. A vomiting child is brought to a Rwandan refugee

camp. The various possible diagnoses give rise to various major symptoms

with known frequencies, as represented in Table 1 below which says, for

example, that only 1% of children with PTSD (Post-Traumatic Stress

Disorder) have diarrhoea. It ought to be easy to tell from Table 1 whether

the child is likely to be suffering primarily from one or the other of the two

dominant conditions among children in the camp: PTSD (in which case

they need psychotherapy and possibly relocation) or late-stage dehydration

(in which case they need to be kept where they are and urgently given oral

10



rehydration therapy). The possibility of the child suffering from both

PTSD and dehydration is ignored in order to simplify the exposition. The

possibility of the child suffering from neither PTSD nor dehydration is

considered but given a low probability.

possible symptoms
vomiting diarrhoea social other symptoms

withdrawal & combinations
(observed (not observed (not observed (not observed
in this case) in this case) in this case) in this case)

hypotheses

dehydration 0. 03 0. 2 0. 5 0. 27

PTSD 0. 001 0. 01 0. 95 0. 029

anything else 0. 001 0. 001 0. 001 0. 997

Table 1

The table is to be read as follows. Each hypothesis named at the left

hypothesises or stipulates some probabilities.6 The hypothesis that the

child has dehydration stipulates that the probability that a dehydrated

Rwandan child’s main symptom will be vomiting is 3%, the probability

that its main symptom will be diarrhoea is 20%, and so on.

6. We might wonder how such sets of hypotheses are selected for consideration. That
question, of course, precedes the main question of this thesis, which is how to evaluate a
procedure which chooses between the given hypotheses. I do not agree with Popper that the
provenance of a hypothesis is irrelevant to philosophy, and yet this thesis does not aim to
discuss the issue of hypothesis selection in any detail. It will not matter for my purposes
where these hypotheses come from as long as they include all the hypotheses which some set
of scientists are interested in at some time.
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In case there is any doubt about the meaning of the table, it can be

expanded as follows:

p(data = vomiting | hypothesis = dehydration) = 0.03
p(data = diarrhoea | hypothesis = dehydration) = 0.2
p(data = withdrawal | hypothesis = dehydration) = 0.5
p(data = other symptoms | hypothesis = dehydration) = 0.27
p(data = vomiting | hypothesis = PTSD) = 0.001
p(data = diarrhoea | hypothesis = PTSD) = 0.01
p(data = withdrawal | hypothesis = PTSD) = 0.95
p(data = other symptoms | hypothesis = PTSD) = 0.029

Note that there is a catch-all column, to ensure that all possible symptoms

are represented somewhere in the table.

The types of analysis that have been proposed for this sort of table, and

for infinite extensions of it, do not agree even roughly on how we should

analyse the table or on what conclusion we should draw. In particular,

Frequentists and factualists analyse it differently.

Let’s look briefly at a standard analysis of this table, as would be

performed by practically any applied statistician from 1950 to the present.

A statistician would run a statistical significance test in SPSS or one of the

other standard statistical computer packages, and that would show that

we should clearly reject the hypothesis that the child is dehydrated (p =

0. 03, power = 97%). The reasoning behind this conclusion is Frequentist

reasoning. It goes like this. If the statistician ran that same test on a large

number of children in the refugee camp it would mislead us in certain

specific ways only 3% of the time. This has seemed to almost all designers

of statistical computer programs, who are the real power-brokers in this

situation, to be an admirable error rate. I will show later that the exact
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ways inwhich running the test on a large number of childrenwouldmislead

us 3% of the time are complicated and not as epistemically relevant as one

might hope: so it is misleading (although true) to say that the analysis in

SPSS has a 3% error rate.

I will champion the factualist analysis of Table 1, which is opposed to

the Frequentist reasoning of the previous paragraph. The factualist says

that the rate at which the applied statistician’s inference procedure would

make mistakes if he used it to evaluate a large number of dehydrated chil-

dren is totally irrelevant , and so are a number of other tools of the orthodox

statistician’s trade, including confidence intervals and assessment of bias

(in the technical sense). The reasoning is simple. We should not care about

the error rate of the statistician’s procedure when applied to many children

who are in a known state (dehydrated), because all we need to know is what

our observations tell us about this child, who is in an unknown state, and

that means we should not take into account what would have happened

if — counterfactually — we had applied this or that inference method to

other children.

One might reasonably suspect that this factualist reasoning is flawed,

because one might suspect that even if the error rate is not something we

want to know for its own sake it is nevertheless epistemically relevant to

the individual child in question. One of the main jobs of this thesis will

be to show that the factualist is right — the error rate is not epistemically

relevant to the individual child— given what else we know (and with some

exceptions).

The counterfactual nature of the error-rate analysis is the primary

source of the disagreement between Frequentists and factualists. This
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is what makes resolving the disagreement a task for a philosopher. Not

only are Frequentist methods irreducibly dependent on the evaluation of

counterfactuals, but moreover they will often reject a hypothesis which

is clearly favoured by the data not just despite but actually because the

hypothesis accurately predicted that events which did not occur would not

occur: in other words, they will reject a hypothesis on the grounds that it

got its counterfactuals right. (See chapter 4 for more details.) Perhaps even

more surprisingly, I will show that this defect in orthodox methodology

cannot be fixed piecemeal. The only way to get rid of it is to show that

counterfactuals of this sort are irrelevant to statistical inference, and then

to give them the boot. Or rather, to be more precise and less polemical, the

only way to fix the problem is to delineate a clear, precise class of cases of

statistical inference in which such counterfactuals are irrelevant; and that

is what I will do. This task will take up most of Part III of this thesis.

The alternative to using these counterfactuals is to restrict our atten-

tion to the single column of the table which represents the observation we

actually made, as the factualist advises us to do:
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actual symptoms
vomiting

hypotheses

dehydration 0. 03

PTSD 0. 001

others 0. 001

Table 2: the only part of Table 1 that a factualist cares about

It would be nice if the two sides in this disagreement were just different

ways of drawing compatible (non-contradictory) conclusions about the

child. I will show in detail that they are not that. To show this just for

Tables 1 and 2 for the moment, a look at the probabilities given by the

hypotheses shows that the observed symptoms are much more likely on

the hypothesis of dehydration than they are on all the other hypotheses.

So according to the factualist way of proceeding we should think that the

child probably is dehydrated, despite the result of the significance test

which suggested otherwise (unless we have other evidence to the contrary,

not represented in the table). We will see in chapter 3 and chapter 5 that

this reasoning is too simple, because there are various competing factualist

positions, but all of them would be likely to draw the same conclusion from

Tables 1 and 2.
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So we have a disagreement between what practically any applied

statistician would say about the table and an alternative conclusion we

might draw from the table if we restrict ourselves to considering only the

probabilities that the various hypotheses assign to the actual observation.

I will show that this disagreement generalises to more or less any table

of hypotheses and observations; it even generalises to most tables (as it

were) with infinitely many rows and columns. Thus, the simple table

above illustrates a deep-seated disagreement about probabilistic inference:

the disagreement between Frequentism and factualism. The table shows

that sometimes (and, as it happens, almost always) these two views are

fundamentally incompatible.

3. WHAT THIS THESIS WILL SHOW

The main purpose of this thesis is to consider principles of statistical infer-

ence which resolve the debate about counterfactual probabilities presented

above and hence tell us something about which conclusion we would be

right to draw from the Table 1 and other such tables.7 These principles

will turn out to be extremely powerful normative constraints on how we

should do statistical inference, and they will have implications for almost

everything applied statisticians do and hence for most of science.

I will defend the factualist school of thought in the form of the likeli-

hood principle, which I introduce here very briefly.

My discussion will suggest that when we have made any observation

in any scientific context, it is good to consider what each of our current

7. Of courseTable 1 is only an example. My conclusionswill hold inmuchmore generality
than that. But not in complete generality, unfortunately: there will be various caveats, which
will be presented in chapter 2 and chapter 8.
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competing hypotheses says the probability of that result was or is. We

should, for example, take into account all the numbers in Table 2. To

say the same thing in more technical language, it is good to consider the

probability of that observation conditional on each of our current competing

theories. (To do so is known as conditioning .) I will claim that these

conditional probabilities — the numbers in a single column — should

form the basis of any inference about which hypotheses we should accept,

retain or follow. This claim is known as the likelihood principle. Of all the

principles in the literature which have been considered important enough

to merit their own names, the likelihood principle is the closest thing to a

precise statement of factualism.

There is one important caveat to my advocacy of the likelihood princi-

ple which I must cover straight away. It is not that the likelihood principle

is ever wrong. It is that sometimes it fails to answer the most impor-

tant question. I have been blithely talking about “evaluating” an inference

procedure as if that meant something univocal. But in fact there are (at

least) two reasons why one might want to evaluate an inference procedure:

reasons which seem compatible at first sight but which, in fact, may pull in

different directions.

• Firstly, one might want to decide which of two competing inference

procedures to use.

• Secondly, one might want to calculate some number which describes

in some sense how good an inference procedure is.

I will be claiming, without hesitation, that the likelihood principle always

gives the right answer to the first question (if it answers it at all; in

some instances it is silent), while Frequentism is misleading at best and
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downright false at worst. But I would like to say something different in

answer to the second question, because the second question is ambiguous

in a way in which the first is not. When we ask the first question, we are

(wemust be) imagining ourselves in possession of a token observation from

which we want to make one or more inferences about unknown hypotheses.

We must, roughly speaking, be in the situation which I will describe in full

detail in chapter 2. In that situation, Frequentism is a very bad guide, as I

will spend most of this thesis showing, while the likelihood principle is our

friend, as I will suggest throughout and show fairly definitively in chapter

13. In contrast, when we ask the second question, we may want either

of two things: we may want to know how well our inferences are likely

to perform, in which case again Frequentism will be misleading and the

likelihood principle will be helpful; or, we might want to know how well

this type of inference would perform on repeated application in the presence

of some known true hypothesis and variable data, without any interest at

all in how in performs on any particular token data. In that case, it is not

immediately clear which of the arguments I present against Frequentism in

this thesis still apply, or which of the arguments in favour of the likelihood

principle still apply. In fact, some of my arguments against standard

forms of Frequentism in chapter 4 do still apply, but not all of them; and

my arguments in favour of the likelihood principle, based as they are on

the framework from chapter 2, are rendered irrelevant. Consequently, I

will not attempt to reach any conclusions about how Frequentism fares

when we are attempting to evaluate the long-run performance of inference

procedures in the presence of known true hypotheses. To do so would be

interesting, but it would take another whole thesis.
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This thesis is one of very few lengthy discussions of the likelihood

principle. It is the first extended treatment of the likelihood principle

to take non-experimental observations (observations made without delib-

erate interference in the course of nature) as seriously as experimental

observations. This huge widening of scope turns out to make practically

no difference to the validity of the arguments I will consider; and that very

absence of a difference is a noteworthy finding of my investigation.

Part I of this thesis deals with preliminary material. In chapter 2 I lay

out a number of useful, relatively uncontentious idealisations carefully and

explicitly but with the bare minimum of argument.8 Then, in chapters 3 to

5, I survey the methods of statistical inference which have been proposed

in the literature to date.

In Part II I motivate the likelihood principle and show that objections

to it fail. I start, in chapter 7, by discussing criticisms of Frequentist

analyses of Table 1. In chapter 8 I introduce the literature on the likelihood

principle and begin to compare it to Frequentism. In chapters 9 to 12 I

discuss criticisms of the likelihood principle.

In Part III I present proofs of the likelihood principle and a brief

case study of its use. In chapter 13 I offer proofs of a new version of

the likelihood principle, a version which overcomes the objections which

have been voiced against previous versions, while in chapter 14 I discuss

objections raised by the proof itself. At the risk of spoiling the dénoument,

here is the version of the principle I will prove.

8. Elsewhere, I have worked on a much more critical discussion of one part of this
framework of idealisations: the part involved in supposing that credences are represented by
single, precise real numbers (Grossman 2005). I do not include this work here, because it
would distract from the main thrust of my arguments.
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The likelihood principle

Under certain conditions outlined in chapter 2 and stated
fully in chapter 8, inferences from observations to hypothe-
ses should not depend on the probabilities of observations
which have not occurred, except for the trivial constraint that
these probabilities place on the probability of the actual obser-
vation under the rule that the probabilities of exclusive events
cannot add up to more than 1.

The consequences of this principle reaches into many parts of scientific

inference. I give a brief theoretical discussion of such consequences, and

one detailed practical example, in chapter 15.

This thesis may seem to have a Bayesian subtext, because it attacks

some well-known anti-Bayesian positions. This pro-Bayesian appearance

is real to a certain extent: the likelihood principle does rule out many anti-

Bayesian statistical procedures without ruling out very many Bayesian

procedures. But that is a side effect: the likelihood principle is intended to

cut across the Bayesian/non-Bayesian distinction, and may turn out to be

more important than that distinction.

4. WHY PHILOSOPHERS NEED
TO READ THIS THESIS

Throughout history, it has become clear from time to time that philosophy

has to stop taking some aspect of science at face value, and start placing

it under the philosophical microscope. To pick only the most exciting

examples, the philosophical community was forced by Hume and Kant to

turn its attention to the scientific notions of space, time and causality; it
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was forced by Bolzano, Russell and Gödel to problematise proof; and it

was forced by the founders of quantum theory to look at the determinacy

of physical properties. Jeffreys, Keynes, Ramsey and de Finetti forced

a re-evaluation of the philosophy of probability in the 1920s, and since

then it has become standard to acknowledge that the definition and use

of probability concepts needs careful thought. But this interest in the

philosophy of probability has not been extended sufficiently carefully to

statistical inference. It is common for even the best-educated philosophers

of science to write critically, and at length, about the many ways in which

probability can be understood, and yet to take statistical notions entirely

at face value. I will discuss Bayesian philosophers as a particularly clear

example.

Bayesianism currently enjoys a reasonable degree of orthodoxy in

analytic philosophy as a theory of probability kinematics (a theory of ra-

tional changes in probability). Of course there are detractors, but among

philosophers of probability and statistics there are not many. I will give

reasons later for thinking that the more extreme detractors — those who

decry Bayesianism even in the limited contexts in which I suggest using it

— are wrong; but even if you are one of them (and a fortiori don’t agree

with all of my arguments) you will agree that to speak to philosophical

Bayesians, as I will in this section, is to speak to a large audience.

It is almost universal for Bayesian philosophers to espouse Bayesian-

ism in a form which entails the likelihood principle, and yet many of them

— perhaps almost all of them — simultaneously espouse error rate Fre-

quentist methodology, which is incompatible with the likelihood principle.

In symbols:
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B =⇒ likelihood principle is true

F =⇒ likelihood principle is false

B + F =⇒ contradiction

where B is almost any Bayesian theory of probability kinematics, and F is

any Frequentist theory of statistical inference.

A very fine philosopher who has found himself in this position is

Wesley Salmon. I use Salmon as an example because my point is best

made by picking on someone who is universally agreed to be clever, and

well versed in the literature on scientific inference including probabilistic

scientific inference, and well versed in at least some aspects of science itself.

Salmon is unimpeachable in all three respects. Many further examples from

the work of other philosophers could be given, but for reasons of space I

hope a single example will be enough to illustrate my point.

When . . . scientists try to determine whether a substance is car-
cinogenic, they will administer the drug to one group of subjects
(the experimental group) and withhold it from another group
(the control group). If the drug is actually carcinogenic, then
a higher percentage in the experimental group should develop
cancer than in the control group. [So far, so good.] If such a
difference is observed, however, the results must be subjected
to appropriate statistical tests to determine the probability that
such a result would occur by chance even if the drug were to-
tally noncarcinogenic. A famous study of saccharine and bladder
cancer provides a fine example. The experiment involved two
stages. In the first generation of rats, the experimental group
showed a higher incidence of the disease than the control group,
but the difference was judged not statistically significant (at a
suitable level). In the second generation of rats, the incidence of
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bladder cancer in the experimental group was sufficiently higher
than in the control group to be judged statistically significant.

(Salmon 2001a, p. 70)

This quotation shows one of the most important champions of Bayesianism

among philosophers give a startlingly anti-Bayesian account of an exper-

iment, even though the purpose of the paper from which this quotation is

taken is to exhort us to accept Bayesianism. In the quoted passage, he does

not quite say that Frequentist significance tests are always the best tool

for drawing statistical conclusions, but he does identify the judgement of

statistical significance (a Frequentist judgement) as an “appropriate statis-

tical test”, and commends work which uses statistical significance testing

as a “fine example” of what is required. In doing this, he endorses the

use of significance tests to draw conclusions about hypotheses; but that is

counter to the likelihood principle and hence counter to Bayesianism.

This, I think, illustrates how philosophers understand Bayesianism

accurately in simple probabilistic situations but have not internalised its

consequences for statistical inference. From the point of view of Bayesian

philosophers, it is the incompatibility of these positions which calls for the

work presented in this thesis.

On with the show.
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Part I

The state of play in statistical inference
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— 2—
Definitions and Axioms

1. INTRODUCTION

In this chapter I present definitions of the fundamental terms I will be

using in the rest of the thesis and axioms governing their use, along with

just enough discussion to establish why I have made the choices I have

made.

Since this chapter mainly takes care of terminological issues, and since

terminological issues tend to have relatively few deep links to each other,

this chapter is more like a collection of short stories than a long narrative. I

beg the reader’s indulgence. The short stories include basic notation, basic

axioms, an exciting (to me at least) new way of describing exchangeability,

and a variety of small controversies related to terminology.

One disclaimer: the reader will notice that I attempt to resolve only

a very few of the many pressing problems in philosophy of probability. I

hope to show by example that it is possible to achieve a good deal of insight

into statistics without first giving the final word on probability. In this

chapter I define my probabilistic terminology fully but say very little about

the interpretation of probability and almost nothing about its ontology.

A few further issues in the philosophy of probability will intrude into

later chapters — most importantly, a discussion of epistemic probability

in chapter 4 — but we will see that many issues in the philosophy of
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probability do not need to be discussed. For example, qua philosopher of

probability I would like to knowwhether objective chance is inherent in the

world or is a Humean projection (or something else); but qua philosopher

of statistics I can achieve a lot without that question arising.

2. THE SCOPE OF THIS THESIS

The exact range of applicability of the conclusions of this thesis is simply

the cases in which we can uncontentiously draw a table such as Table 1

(finite or infinite). In other words, it is the cases in which we have an agreed

probabilistic model which says which hypotheses are under consideration

and what the probability of each possible observation is according to each

hypothesis.

This thesis is about inference procedures in science. One of my claims

will be that the study of the philosophy of statistics (and hence, derivatively,

the philosophy of most of the special sciences) can be clarified tremen-

dously by analyses of inference procedures, largely (although of course

not entirely) independently of analyses of more primitive concepts (such

as “evidence”, for example). I will therefore give an explicit definition of

“inference procedures”, at the risk of stating the obvious.

An inference procedure is a formal, or obviously formalisable,
method for using specified observations to draw conclusions
about specified hypotheses.9

9. Throughout this thesis, important terms are set in bold text where they are defined,
while italic text is used both for the definitions of relatively unimportant terms and for general
emphasis; except that within quotations from other authors bold text is my emphasis while
italic text is the original authors’ emphasis.
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I sometimes refer to inference procedures as methods; sometimes I do this

just for variety and sometimes I do it because I want to ephasise the

operational nature of inference procedures.

I am discussing ways to evaluate inference procedures, not ways to

evaluate individual inferences. Does this mean that I can’t draw any con-

clusions about individual inferences? It almost does. I cannot conclusively

infer from the deficiencies of an inference procedure that any given infer-

ence is a bad one. This admission may seem rather weak, but it is the best

anyone can do at such a general level of analysis. Indeed, it is the best

anyone can do not only in statistical inference but even in better developed

fields of inference such as deductive logic. Deductive logic confirms an

individual inference as valid when it instatiates a valid procedure . . . re-

gardless of whether it also instantiates an invalid procedure (which in fact

it always does, since any non-trivial argument instantiates the argument

form p ` q, p 6= q). This does not deter us from working out which deduc-

tive inference procedures are invalid. Finding invalid inference procedures

has proved to be useful, despite the fact that not all instances of invalid

inference procedures have token invalidity. We should expect the same to

be true of inductive inference procedures: it will be useful to know which

are invalid, even though arguments constructed using invalid inference

procedures may occasionally be good arguments.

HYPOTHESES

I will be concentrating on statistical inference procedures, and so it will be

useful to restrict the use of the word “hypotheses” in the above definition,

in two ways.
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Firstly, my interest in hypotheseswill mostly be restricted to hypothe-

ses which specify precise probabilities for all possible outcomes of a given

experiment or of a given observational situation. (I mean “possible” in the

sense of forseeable, of course, since my topic is entirely epistemological.

Metaphysical possibility is irrelevant. A third type of possibility, logical

possibility, is factored in to my work via the axiomatic probability theory

which I will state later in this chapter.) This type of hypothesis is known in

the literature as a “simple hypothesis”. I will use the qualification “simple”

often enough to remind the reader that I am discussing precise hypotheses,

but for the sake of a bit of grammatical elegance I will only use it when

the distinction between simple and compound (non-simple) hypotheses

is directly relevant, not every time I use the word “hypothesis”. Many

parts of the literature use the terminology in the way I am suggesting or,

compatibly, restrict the word “hypothesis” to simple hypotheses.10

10. Thus, “if a distribution depends upon l parameters, and a hypothesis specifies unique
values for k of these parameters, we call the hypothesis simple if k = l and composite if k < l”
(Stuart et al. 1999, p. 171), although unlike Stuart et al. I will not generally assume that
hypotheses are characterised by parameters. Similarly, “By hypotheses we mean statements
which specify probabilities.” — Barnard, in (Savage & discussants 1962, p. 69).

Some authors use the word “theory” interchangeably with “hypothesis”, but I will need
to use the word “theory” to mean theory of statistical inference, so I will never use it to mean
scientific hypothesis.

A disadvantage of my stipulation that hypotheses must specify probabilities is that
it forces me to restrict the meaning of the word “hypothesis” to exclude statements which
are functions of the observations which we wish to use to make inferences about those
very statements (hypotheses hi such that hi = f (xa) for some f , in the notation which I
will introduce below). Let me briefly (just for the duration of this paragraph) introduce
the term “hyperthesis” to refer to such a statement, and “metathesis” to refer jointly to
hypotheses and hypertheses. Now, were I to measure the heights of a random sample of two
philosophers, and then to wonder whether the taller of the two people in my sample was
cleverer than the shorter one, assertions about their relative braininess based on knowledge of
who was in the sample would be hypertheses, not hypotheses. The problematic aspect of such
hypertheses is that their meanings change when the observation is made: beforehand they
are general (or, if you like, variable) assertions about the whole population of philosophers,
but afterwards they are assertions about two particular, known philosophers, say Hilary
Putnam and Ruth Anna Putnam. Consider whether Hilary is cleverer than Ruth Anna. It
is, I hope, obvious that the likelihood principle applies to this question if it applies anywhere:
if only the probability of the observation according to various hypotheses is relevant to
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The practical advantages of discussing statistical inference in terms of

inference procedures will become clear as we go. There is also a theoretical

advantage: discussing inference procedures is (I claim) exactly what we

need to do in order to abstract away from unimportant details of specific

contexts of application of inference methods without losing the details that

matter. A discussion of the concept of evidence, to take my example of a

more primitive concept that I could have started with instead of inference

procedures, is extremely important — indeed, I have written on that topic

(Moore &Grossman 2003, Grossman&Mackenzie 2005)—but it requires

a discussion of sociological and political issues surrounding the use of the

inference about those same hypotheses (as the likelihood principle asserts) then surely it is
also the case that the probabilities of the observation according to various hypotheses plus the
probabilities of the observation according to various hypertheses is sufficient for inference
aboutmetatheses. To illustratewith the Putnams, if only the probabilities according to various
hypotheses of observing the Putnams are relevant to inference from the observation to any
hypothesis, then surely those same probabilities plus the probabilties according to various
hypertheses of observing the Putnams are sufficient for inference about all metatheses. Thus,
if the arguments of this thesis in favour of the likelihood principle for hypotheses narrowly
construed have any weight, then the likelihood principle will also be true for metatheses
in general. However, dealing with hypertheses would considerably complicate some of the
arguments in this thesis, because many of my arguments use the fixed nature of hypotheses
as a simplifying assumption; so I do not attempt to give detailed arguments in favour of the
view that the likelihood principle applies to hypertheses as well as to hypotheses.

The problem which I have just described is known in the literature as “the prediction
problem” (Dawid 1986, p. 197), even though most problems which we might non-technically
call prediction problems do not have this form and do fall within the scope of this thesis — for
example, the question of how clever I ought to expect a third randomly-sampled philosopher
to be, given information from a sample of two random philosophers, or the question of how
clever I ought to think the population of philosophers as a whole, again given information
from a sample of two, are common-or-garden prediction problems in which the hypotheses
do not depend on the observation for their meanings, and such hypotheses are well within
the scope of this thesis. (Any such problem could be stated in terms of hypotheses which
are functions of the observation, by taking “the observation” to include hypothetical future
observations of the third philosopher or of the whole population of philosophers, but although
it could be stated in such a form it need not be.)

It is possible in principle to incorporate the so-called prediction problem into the
framework presented here. Dawid (1986, p. 197) sketches a proof that the stopping rule prin-
ciple, which he rightly calls “the most controversial of all the consequences of the likelihood
principle”, is true even in prediction problems. However, for simplicity of exposition of the
likelihood principle (which is not so easily proved to apply to prediction problems as the
stopping rule principle is), I restrict the meaning of “hypothesis” so as to exclude prediction
problems. The only exception is at the end of chapter 13, where I state a mathematical result
about the prediction problem, without proof, in order to show that it is at least plausible
that the likelihood principle is true even in prediction problems (as technically construed; I
emphasize again that common-or-garden prediction problems are unproblematic).
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word “evidence” which have very little bearing on the normative task

undertaken in this thesis.

Having said that, Iwill discuss several specific contexts, for illustrative

purposes and to check my assertion that I am abstracting the important

aspects of statistical inference. This will be especially clear in chapter 15,

in which I will discuss an urgent problem in applied statistical inference

with enough scientific and social context to test the accuracy and relevance

of my theorising.

THEORIES OF THEORY CHANGE

Why do I restrict my conclusions to only part of science, so that they

cannot give us a complete theory of theory change? Recall that the range

of applicability of the conclusions of this thesis is the cases in which we

have an agreed probabilistic model which says which hypotheses are under

consideration and what the probability of each possible observation is

according to each hypothesis. This is an extremely common situation in

science: indeed, it covers the vast majority of scientific experimentation,

especially in the biomedical sciences. However, the reader can easily think

of examples that are not covered by this sort of model. That is because

the atypical cases that are not covered are some of the most interesting

cases for philosophers and historians of science. Cases in which theories

are only vaguely described but are nevertheless in active competition with

each other, as was the case with theories of the shapes of the continents

in the 1960s, are of extreme interest to all of us, especially to those of a

Kuhnian disposition. The reason I do not discuss these cases in this thesis

is probably obvious: they raise the problem of how to make a mathematical
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model describing the theory. That problem is of course important and

interesting, but the considerations which it brings into play hardly overlap

at all with the considerations needed to work out how to analyse a given

mathematical model. It therefore makes no sense to attempt both in one

thesis; and I will attempt only the latter.

Fortunately, most of science is not like 1960s theories of continental

drift. In the vast bulk of scientific work the hypotheses under active consid-

eration are extremely clearly described, to the point where the probabilities

involved are stated explicitly by the hypotheses. For example, in all clinical

trials of treatments for life-threatening diseases, there is a continuum of

hypotheses stating that the life expectancy (expressed as relative risk of

death adjusted for measurable predictive factors such as age) of subjects

who are given the experimental treatment is x, for all x between 0 and

1. Each of these hypotheses has sub-hypotheses describing the possible

side-effects of the treatment, but we can ignore those sub-hypotheses for

simplicity — they are just additional rows in the table and make no differ-

ence to the principles of analysis. What’s more, this clarity of hypotheses

is observed not just during periods of Kuhnian normal science (if indeed

there are any) but during periods of conflict between rival theories as well.

It is very common (although not, I admit, universal) for rival theories to

each have well defined hypotheses which are considered to be workable and

precise (although false and perhaps unimportant) even by their opponents.

In other words, most of science is stamp-collecting, and this thesis, I hope,

describes stamp collecting rather well.

What forms can these hypotheses take? In assuming that they define

probabilities of possible outcomes, I am assuming that they are partly
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mathematical, so it might be expected that I would have to say something

about their mathematical form. But thankfully that isn’t necessary. A

philosopher can state a statistician’s model of nature as simply

p(X = x|h) = fh(x)

where x represents possible data,X is a random variable (statisticians’ jargon

for a function from the structured set of possible events to the set of possible

observation reports), p denotes probability and fh is the probabilistic model

according to hypothesis h.

In general, x is a vector, often of high dimension — typically several

dimensions for each observed data point, which means that in a large

medical study, for example, the dimensionality of x is in the hundreds of

thousands ormillions (although the dimensionality can often be reduced by

summarising the data using sufficient statistics, which I discuss in chapter

13 when I come to the sufficiency principle).

There are various questions we must ask about f and x for philo-

sophical purposes, but the functional form of f (log-Normal, Cauchy or

whatever) is not one of them, or at least is not foremost among them, as

we will see from the amount of work we can do without it. This should

come as a great relief to those of us who are not mathematicians.

Among the questions which we cannot ignore, for reasons which will

become apparent later, are:

• whether f is discrete or continuous,

• whether x is multidimensional
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• and if so whether the dimensions of x are commensurable (in the

mathematical sense of being multiples of each other, not in any

subtle Kuhnian sense).

I will say more about the problems of multidimensional data in chapter 15.

Very occasionally I will assume that f is either continuous or discrete

(finite); but mostly I will assume nothing about it at all except that it takes

values between 0 and 1 inclusive and integrates to 1.

3. BASIC NOTATION

I use small letters in p(x|y) as shorthand for p(X ′ = x|Y ′ = y), where X ′

and Y ′ are random variables. And similarly p(F(x)|G(x)) is shorthand for

p(F(X ′) = F(x)|G(Y ′) = G(y)).

Random variable is standard terminology in discussions of statistics,

but it is slightly misleading. Fortunately, I will be able to do without

discussing random variables most of the time; but not quite all the time. A

random variable such as X ′ is (famously) neither random nor a variable: it

is a function which associates a real number with each possible observation

into real numbers (typically, subject to the constraint that (∀x ∈ R) the set

{y : X ′(y) ≤ x} is measurable according to a standard measure on R).

Although X ′, a random variable, is not a variable, x, a possible value

of X ′, is a variable, and may in some cases need to be treated as random

(although only rarely in this thesis). I write the set of possible values of x

— in other words, the range of the random variableX ′—asX . Elsewhere

in the literature, plain capitals (X , Y ) usually stand for random variables,

not for sets of possible outcomes, but for my purposes the range of each

random variable is more important than the random variable itself, and it
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is well worth reserving the simpler notation (X rather than X ′) for the

more important concept.

The following terms have meanings that are more or less specific to

this thesis.

A doxastic agent is the epistemic agent from whose point of view a proba-

bilistic or statistical inference is meant to be a rational one. As we will see,

some theories of statistical inference require such an agent, while others

(notably Frequentism) do not.

X is a space of possible observations.

xa is an actual observation (“a” for “actual”) — either the result of a single

experiment or observational situation, or the totality of results from a

set of experiments and observational situations which we wish to analyse

together. When xa is the only observation (or set of observations) being

used to make inferences about a hypothesis spaceH , I will often refer to xa

as the actual observation. Presumably (human fallibility aside) it includes

all the relevant data available to the agent making the inferences, even

though it is not necessarily the only observation relevant to H which has

ever been made by anyone.

H is the set of hypotheses under active consideration by anyone involved

in the process of inference.

Θ is a set (typically but not necessarily an ordered set) which indexes the

set of hypotheses under consideration. I will always treat θ as an index on

the whole set of hypotheses.11 Very occasionally, in quotations from other

11. In other words, (∀h ∈ H ) (∃θ ∈ Θ : Hθ = h).
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authors, it will be just a partial index on H . In this rare case, θ will be one

of several parameters in a parametric model.

AN OBJECTION TO USING X

Although the above set of quantities is the usual starting point for discus-

sions of statistical inference, Lindley (1990a) complains that the sample

space, X , is irrelevant to discussions of statistical inference (although not,

of course, to discussions of experimental design, which are more or less

identical with discussions of the value of alternative choices of X). I will

quote Lindley at length, because his views about X will help to motivate

the main contentions of this thesis:

The [Bayesian] objects to the . . . use of an arbitrary sample space
[X ] . . .

Since the arbitrariness of the sample space is not often ap-
preciated, it might be worth discussing it. The practical reality
is the data [xa] (not X), the parameter spaceΘ and the likelihood
function p([xa]|·) for fixed xa and variable θ. The sample space
X is, to use Jeffreys’ vivid description, the class of observations
that might have been obtained but weren’t. Both in practice and
in theory, this class can be hard to specify. . . .

Let me digress [from Lindley’s topic, not from mine] to
answer a point raised by two referees . . . to the effect that
the sample space X and its associated densities are the primary
entities fromwhich the likelihood is derived. This need not be so.
Although it is customary for any paper in probability to begin
with the triplet (X , [H ], p) . . . this complete specification is not
necessary and often extends beyond the bounds of the reality.
Why, when discussing probabilities, is it necessary to have them
defined for more sets than those of interest? . . . The (X , [H ], p)-
introduction is a useful starting point for many problems [such
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as experimental design] but not [for statistical inference] when
the data are to hand.

(Lindley 1990b, p. 46)

I agree with Lindley’s claim that X is not essential to statistical inference.

His use of the phrase “the bounds of reality” is not due to an interest

in ontology, but to a recognition that the hypothetical repetitions of an

experiment on which the sample space is based are often, for technical

reasons, not the same as any repetitions of the experiment which could

conceivably be expected.12 In any case, the most important foundations

of Lindley’s complaint are not whether or not X is in any sense real but

two less difficult issues: whether or not it is arbitrary and whether or not

it is “of interest”. I will discuss in chapter 7 and chapter 15 the extent to

whichX is arbitrary. As for being of interest, it is clearly of only subsidiary

interest at most, compared toH ; if we could do statistical inference without

it, there would be, at the very least, an argument from parsimony for doing

so.

Further details of the reasons for which I agree with Lindley do not

belong here; they will be discussed abundantly in Part II of this thesis.

Lindley’s point is equivalent to a version of the likelihood principle,

which I will champion in Part II. But my aim is not only to explain how

the likelihood principle works but also to show that it is an improvement

over competing principles of statistical inference; and in order to discuss

these competing principles I must be able to talk about a complete sample

space, X , no matter how much I agree with Lindley that such a thing is

12. Two examples are the fixing of the marginal totals in contingency tables, and the
fixing of the “independent” variable in bivariate regression analysis: in each of theses cases,
the sample space which is used in the analysis is given constraints which need not be expected
to apply to repetitions of the experiment (Lindley 1990b, p. 47). Lindley is uncontentiously
right about these examples; but the details are unimportant for our purposes.

38



an unnecessary invention. Consequently, I will assume throughout this

thesis that X has been specified, whether arbitrarily or not and whether

unnecessarily or not.

NON-PARAMETRIC STATISTICS

I will generally assume the existence of an index set on H , and in a loose

sense this index set will give us a parameter onH ; but this does not restrict

mywork towhat statisticians call “parametric”models. As the authoritative

Kendall’s Advanced Theory of Statistics explains the terminology,

[When] no parameter values are specified in the statement of
the hypothesis; we might reasonably call such a hypothesis non-
parametric. . . . [When the hypothesis] does not even specify the
underlying form of the distribution [it] may reasonably be termed
distribution-free. Notwithstanding these distinctions, the statis-
tical literature now commonly applies the label ‘non-parametric’
to test procedures that we have just termed ‘distribution-free’[.]

(Stuart et al. 1999, p. 171)

In other words, a parametric hypothesis is one which not only is indexed

by a parameter(s) but also mentions its parameter(s). This point is relevant

to the long shelves of books in the mathematics library with titles such

as “non-parametric statistics”. These books are (almost exclusively) about

finite collections of arbitrary hypotheses which do not mention any param-

eters (or which, for a variety of idiosyncratic reasons, are to be analysed as

if they did not mention any parameters). Since they are finite, they can be

indexed; and since they can be indexed, the work presented in this thesis

is directly applicable to them, even when the work presented here appears

to be parametric. (See also Salsburg 1989 for a very general argument
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to the effect that all interesting theories apply equally to parametric and

non-parametric models.)

Under what general circumstances can we be sure that there is an

index set onH? First of all, ifH is finite or countably infinite then of course

it can be indexed. (Strictly speaking it should be provably countably infinite

by a constructive proof, but this is an unimportant detail.) Interestingly, if

there is a countable number of observables, each with a countable number

of possible states, H can be the set of all probability distributions and thus

the arguments to be given here can be completely general (in terms of H at

least) and H can still be indexed. Alternatively, if we can fully describe an

uncountable but continuous distribution (either in natural language or in

mathematics) then we can still count it as being indexed by parameters, the

parameters in this case being whatever lexical tokens are used to describe

the function (possibly an infinite number of them, if the definition contains

terms like (∀i ∈ Z)). So H can be indexed in the discrete case and in

all describable continuous cases. In most systems of pure mathematics

there are, provably, indescribable functions; but as philosophers of applied

mathematics we need not worry about them too much.

I will assume in most of this thesis that all variables in a model

should be considered as parameters. This is one of the places in which

the likelihood principle is open to re-formulation, and it is an issue on

which Bayesians have interestingly diverging opinions, as I will discuss in

chapters 9 to 12.
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4. PROBABILITY AXIOMS

It will be useful to have a mathematical axiomatisation of probability. I will

give axioms based on a set of axioms by Harold Jeffreys (1961, pp. 16-25)

(not to be confused with Richard Jeffrey).

Jeffreys’s axioms take conditional probability, P(a|b) (which I write

henceforth with a lower-case p, p(a|b)), to be primitive. In such a system,

probability is relative to background knowledge even though it might

seem that it shouldn’t be — just as time is relative to a reference frame

even though it might seem that it shouldn’t be. In a moment I will argue

that Jeffreys is right to take this stance, although I will conclude that it

need not make much difference. From among the various axiomatisations

which take conditional probability to be primitive, there is no important

reason to prefer Jeffreys’s, but he does perhaps profit by paying particular

attention to the epistemological context within which his axioms are to

operate.13

CONDITIONAL PROBABILITY AS PRIMITIVE

One advantage of taking conditional probability to be primitive is that

this avoids the problems raised by trying to find a definition of conditional

probability. The definition of conditional probability used by standard

theories that take non-conditional probability as primitive is the equation:

13. Themany sets of probability axioms (including themost famous sets due toKolmogorov,
Renyi and Carnap and the seminal set due to Keynes) are in agreement on most points except
for ontology and hence more or less interchangeable with each other as far as applied
mathematics is concerned. Many other sets of axioms would have done almost as well for
my purposes as Jeffreys’s. There might have been some advantage to using axioms which
allowed non-real-valued probabilities. I explore some such possibilities in (Grossman 2005),
and I find there that the extra complications, although valuable in their own right, seem likely
to add very little to our understanding of theories of statistical inference.
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p(a|b) = p(a&b)
p(b)

, provided p(b) 6= 0.

This definition proves awkward for such theories, because sometimes p(b)

is 0 (Hájek 2003). This problem of zero divisors could be avoided, at least

when talking about epistemic probabilities, by stipulating that no rational

agent should ever, strictly speaking, hold the probability of anything to be

quite zero. My own preferred way of doing this would be to construct a

probabilistic equivalent of David Lewis’s (1996) theory of knowledge. In

Lewis’s theory, we know everything which we are justified in believing

when we’re ignoring possibilities that may be “properly ignored” — and

what may be properly ignored is contextual. Similarly, one could argue,

we call things zero-probability when we’re ignoring possibilities that may

properly be ignored . . . and that is contextual too. Nothing is ever

zero-probability simpliciter. However, this does not save the proposed

definition of conditional probability froma second problem. Hájek suggests

substituting the variables in the above equation as follows (2003, slightly

paraphrased):

• a = I get heads

• b = I toss a coin

Then the supposed definition of conditional probability would give us:

p(I get heads | I toss a coin) = p(I toss a coin and get heads)
p(I toss a coin)

.

But this is a lousy definition of the left-hand side, argues Hájek, because the

left-hand side can be well defined (e.g., equal to ½ for a fair coin) even if the
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right-hand side is left hopelessly vague. I consider this second argument

of Hájek’s to be a knock-down argument in favour of making conditional

probability primitive.14

Despite these arguments, the conditional nature of probability can be

ignored in many cases. Even though I will be treating all probabilities as

conditional in my axioms, I will usually be talking about cases in which

the question of exactly what a particular probability is conditional on is

not interesting. And although I deny that we can always reduce a doxastic

agent’s total belief state to a simple description, it seems clear that all we

need in order to enable us to do so is the caveat that we are interested only in

belief states which can be shared by members of an epistemic community.

(I am especially interested in scientific communities, of course, because

they are the paradigm users of statistical inference.) So I will be using

categorical (non-conditional) probabilities freely in this thesis after all, as

do many other authors who take conditional probability to be primitive,

14. A third argument, just in case one is needed, is an epistemic argument which applies (at
least) to epistemic probabilities rationally ascribed by epistemic agents. This argument shows
that an epistemic agent cannot rationally hold a categorical (non-conditional) probability,
except in a trivial way. Suppose, for the purposes of reductio, that an agent holds that the
categorical probability of j is k: in symbols, p (j) = k. Suppose the agent also believesm, where
m is distinct from j . Then either m is probabilistically irrelevant to p (j) — in other words,
p (j|m) = p (j) — or m is probabilistically relevant to p (j). In the latter case, it is irrational
to say that p (j) is the agent’s probability of j . p (j|m) may still not be a rational ascription
of probability, since there may be further epistemic factors to take into account — call them
y, z, w, t , . . . — but these factors only cause the rational ascription of probability to be as
it were more conditional. If x, y, z, w, t , . . . are all relevant to the probability of j then the
only probability that the agent can rationally claim to be her probability of a is p (j|B), where
B is her whole belief state. (Note that my argument uses only pairwise comparisons of parts
of belief states, and therefore applies even if agents’ belief states cannot be fully decomposed
into summable components.)

This third argument leaves me with the conclusion that the only cases in which con-
ditional probabilities can be avoided, even were we not to buy Hájek’s arguments, would
be:

– when we are definitely and only considering non-epistemic probabilities; and
– in the trivial case in which, for allm in the domain of things that can occupy the position
after the “|” in a conditional probability ascription, p (j|m) = p (j).
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including Jeffreys and Lindley. This is the purpose of my addition of Axiom

8 to Jeffreys’s axioms in the next section.

STATEMENT OF PROBABILITY AXIOMS

The following axioms are from (Jeffreys 1961, pp. 16-25), except for Axiom

0, which I have added. Axioms 1-7 and Conventions 1-3 are reproduced

here almost verbatim (my changes are in square brackets), but omitting

Jeffreys’s interspersed comments.

Axiom 0. The domain of the propositions mentioned in the following

axioms is a fixed set of sentences, H .15

Axiom 1. Given [the truth of a proposition] p, q is either more, equally, or

less probable than [p], and no two of these alternatives can be true.

Axiom 2. If p, q, r, s are four propositions, and, given p, q is more probable

than r and r is more probable than s, then, given p, q is more probable than

s.

15. The purpose of my added Axiom 0 is to resolve an ambiguity in Jeffreys’s axioms: he
leaves it unclear whether their contentful primitives are sentences or propositions. Jeffreys’s use
of quotation marks in some phrases seems to suggest that they are sentences, while his failure
to use quotation marks in other phrases such as pq seems to suggest that they are propositions
(especially since one does not make a logical union of sentences by concatenating them, and
even more especially since he calls them propositions). The main point at issue is that
sentences, unlike propositions, are only meaningful if they are produced (or at least imagined
to be produced) by specific epistemic agents. In this way, sentences suit the philosophy
of statistics better than propositions. (Earman (1992, p. 35) seems to agree, although he
does not emphasize the point.) The sentence-producing doxastic agents in question are the
members of scientific communities studying the specific problems for which statistical models
are produced. But this will not quite do: we will need a way to treat synonymous sentences as
being identical (whereas synonymous propositions simply are identical, by definition). Formy
limited purposes, I can do this with a wave of the hand. No subtle problems about synonymy
will crop up in this thesis. I will only be discussing cases in which it is perfectly clear to
a given scientific community which sentences are to all intents and purposes synonymous
with which other sentences. Any situation in which a dispute about synonymy is sufficiently
heated to have short-term scientific consequences is a case of prima facie (at least) Kuhnian
incommensurability, and such cases I have already foresworn. I do not doubt that in more
subtle ways synonymy is always in dispute, but if the dispute has no short-term scientific
consequences then it is irrelevant to statistical inference.
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Axiom 3. All propositions deducible from a proposition p have the same

probability on data p; and all propositions inconsistent with p have the

same probability on data p.

Axiom 4. If, given p, q and q′ cannot both be true, and if, given p, r and

r′ cannot both be true, and if, given p, q and r are equally probable and q′

and r′ are equally probable, then, given p, ‘q or q′’ and ‘r or r′’ are equally

probable.

Convention 1. We assign the larger number on given data to the more

probable proposition (and therefore equal numbers to equally probable

propositions).

Convention 2. If, given p, q and q′ are exclusive, then the number assigned

on data p to ‘q or q′’ is the sum of those assigned to q and to q′.

Axiom5. The set of possible probabilities on given data, ordered in terms of

the relation ‘more probable than’, can be put into one-one correspondence

with a set of real numbers in increasing order.

Convention 3. If p entails q, then P(q|p) = 1.

Axiom 6. If pq entails r, then P(qr|p) = P(q|p).

Axiom 7. For any propositions p, q, r, P(qr|p) = P(q|p) P(r|qp) / P(q|qp).

5. EXCHANGEABILITY AND MULTISETS

In what I hope is a useful terminological innovation, I would like to draw

attention to the similarity between the notions of exchangeable sequence
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(invented by statisticians) and multiset (invented by computer scientists

and used by logicians but not — until now — by other philosophers).

EXCHANGEABILITY

When we do statistics, we usually think of ourselves as observing sequences

of events, and so, not surprisingly, mathematical statistics tends to be

worked out in terms of the mathematics of sequences. But we will see that

sequences are not quite the best mathematical tools for the job.

A sequence is a set of items occurring in some order. Sequences

are usually written in angle brackets. By definition, the order of terms in

a sequence is an essential property of that particular sequence; so when

we distinguish sequences from each other, we count 〈A,B,C,A〉 as being

different from 〈A,A,B,C〉, as well as being different from 〈A,B,C〉. We

will be discussing sequences of observations; or, speaking more strictly, we

will be considering sequences of opportunities to make observations.16

Statisticians sometimes talk about sets of events instead of sequences

of events. In a statistical context, this is really talk of sequences after

all, because statisticians always take each event to be implicitly labelled

(indexed) by its spatiotemporal location; hence the set is really an ordered

set; in other words, a sequence. This equivalence in statistical language

between sets of events and sequences of events is made explicit whenever

necessary in the statistical literature.

16. The distinction between observations on the one hand and observation opportunities
on the other is that for the latter we don’t need to know the outcomes of the observations,
or even be confident that the observations will be made. Statisticians, parsimoniously but
confusingly for us philosophers, allow themselves to use the word “event” ambiguously to
cover both observation opportunities and their outcomes.
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In 1937, Bruno de Finetti made a breakthrough in mathematical

statistics by inventing (or, for the Platonists among us, discovering) the

tremendously useful property of exchangeability. De Finetti’s definition:

[Events] are said to be exchangeable if they play a symmetrical
role with respect to every problem of probability[.]

(de Finetti 1980, p. 195)

A more careful definition:

Two or more observation opportunities are exchangeable iff
we have the same information about them; and two or more
observation outcomes A and B are exchangeable iff it does us
no good, either before or after the fact, to distinguish between
the outcome sequences 〈A,B〉 and 〈B,A〉. Exchangeability for
events means one or the other of these according to context. In
all cases, assignments of exchangeability, when properly made,
are relative to some specified purpose; in this thesis, the purpose
will always be the purpose of making inferences about a set of
hypotheses.

For example: I ask you to use a pin to pick twowords at random from “Two

Dogmas of Empiricism” (Quine 1980), in order to estimate the number

of times the word “Carnap” appears in that paper. You pick the words

“Ptolemy” and “Lewis” (meaning C. I. Lewis). I should consider your

two observations to be exchangeable, because it would be irrational of me

to make any inferences about Quine’s prose on the basis of the order in

which you came across the words . . . unless, that is, I have some reason

to believe that you were using the pin to sample words in a strange and

time-dependent manner.
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The judgement that your observations are exchangeable is a synthetic

judgement (pace Quine!) which rests on an understanding of themechanics

of the situation and does not have any logical justification (as far as I know).

It is not, for example, meant to be justified as an application of the principle

of indifference. Although often difficult to justify, the judgement is often

easy tomake. In particular, amethod of random sampling froma population

that would disturb exchangeability would have to be so strange that it

would hardly deserve the name “sampling”. One such method is poking

the pin at thewords ofQuine’s text in alphabetical order if you already know

that “Carnap” appears more than twice, and in reverse alphabetical order

otherwise. I have no reason to think you’ve done anything of the sort, and I

declare that I am ignoring the possibility when I assign exchangeability to

the experimental outcomes. The sort of get-out clause that I would invoke

later if I found out you had sampled like that is always implicit in any claim

that an agent ought to make an assignment of exchangeability. Broadly

speaking the get-out clause is a ceteris paribus clause: it says that if things

I haven’t thought of yet turn out not to be equal then I may be forced to

reconsider my epistemic position. I must acknowledge here that ceteris

paribus clauses are rarely if ever easy to analyse (Earman et al. 2002).

But recall that I am not claiming that it is easy to justify any assignment

of exchangeability, which would (it seems) require a rather vague ceteris

paribus clause; only that it is easy to make such an assignment. Making

such an assignment does not require a ceteris paribus clause.

Exchangeability can be given a more mathematical definition (below)

which makes clear some of its nice mathematical properties. One very

nice mathematical property, for example, is that every finite exchangeable
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sequence of events defined on a discrete event space (i.e., a set of possi-

ble outcomes with the topological characteristics that we would normally

associate with a subset of the whole numbers) can be modelled by the prob-

abilist’s favourite experimental setup, drawing balls from urns (Diaconis &

Freedman 1980, p. 234). For this and other reasons, modern statisticians

usually define exchangeability using the sort of mathematical gloss which

makes contentious assumptions about probability theory. For example:

Exchangeability is the property that a sequence of events 〈A1,
A2, . . . 〉 has when “the subjective joint distribution over 〈A1,
A2, . . . 〉 is unchanged by any (finite) re-labelling of the events.”
(Dawid 1977, p. 218)

Note that Dawid’s definition does not really apply to a sequence of events

simpliciter but rather applies to a sequence of events with respect to some

probability distribution. The idea of a subjective distribution is a worryingly

partisan concept. We can avoid this difficulty inmost epistemic contexts by

saying thatwhen a sequence of events is exchangeablewith respect to all the

probability distributions in play (those defined by the set of hypothesesH )

it is exchangeable simpliciter. This clarification makes Dawid’s definition

equivalent to my definition above, in which it was required that “it does

us no good” (implicitly: according to any probability distribution under

consideration) to distinguish between the memers of a sequence. A similar

clarification should be applied to Gelman et al. ’s definition below.

The idea of exchangeability is central to almost all statistical analy-

sis. In non-Bayesian statistics, the word “exchangeability” is rarely used,

but instead exchangeability takes the form of the assignment of a set of

identically distributed variables, together with an analysis that uses only
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test statistics which are blind to the order in which the variables occur

or are observed — typically, the test statistic is the sum or the product

of the variables, or a function of their sum or product. In the Bayesian

statistics literature, exchangeability is used directly. To quote from a fairly

comprehensive treatment of applied Bayesian statistics,

The usual starting point of a statistical analysis is the (often tacit)
assumption that the n values yi may be regarded as exchangeable,
meaning that the joint probability density p(y1, . . . , yn) should
be invariant to permutations of the indexes. . . . The idea of
exchangeability is fundamental to statistics[.]

(Gelman et al. 1995, p. 6)

De Finetti also invented aweaker notion, known as partial exchangeability:

A probability assignment P on sequences of length n is partially
exchangeable for a statistic T if

T(x) = T(y) ` P(x) = P(y)

where x and y are sequences of length n.
(Diaconis & Freedman 1980, p. 238)

I will explain the relationship between exchangeability and partial ex-

changeability shortly.
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MULTISETS

I have been surprised to discover (thanks to Allen Hazen) than an idea

that turns out to be interchangeable with exchangeability was invented by

computer scientists, completely independently of the statistical literature,

in the 1960s. This idea is the multiset:

Amultiset is a collection of items in which multiple appearances
of the same item are significant but order is not.

For example, the multiset [A,B,C,A] is the same multiset as [A,A,B,C],

but it is not the same as the multiset [A,B,C]. I write multisets using

square brackets, following (Meyer & McRobbie 1982). The concept seems

to have been invented by Knuth, who credits the terminology to N. G. de

Bruijn (Knuth 1968, p. 551).

Meyer and McRobbie, who find a use for multisets of premisses in

relevant logic, explain the intuitive appeal of the concept with the following

diagram:

Figure 1: Multisets
(adapted from Meyer & McRobbie 1992)
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Multisets can equally be seen as things like sequences in which order does

not matter or as things like sets in which repetition is allowed. As this

suggests, multisets are easily axiomatised in terms of sets (Knuth 1968)

or in terms of sequences. This is only useful in order to check that no

problems crop up in the transfinite case, and I will not take the space to

reproduce an axiomatisation here.

Multisets give us a natural way to express many ideas that have been

with us for some time. For example, every whole number can be expressed

as the multiset of its prime divisors: 6 is equal to 2 × 3, 12 is equal to

2 × 2 × 3, and so on; and a large part of contemporary number theory

relies on this decomposition. But this is not a decomposition into sets of

factors, because to say that the factors of 12 are the members of the set

{2, 2, 3} would be quite wrong, given that that set is identical to the set

{2, 3}, the members of which do not multiply to give 12. The factors of

12 are 2, 2 and 3, or they are 2 (twice) and 3; they are not merely 2 and 3.

And nor is it a decomposition into sequences of factors, because no sequence

represents the factors of 12 uniquely: the factors can be represented by

〈2, 2, 3〉, or 〈3, 2, 2〉, or 〈2, 3, 2〉, but each of these representations implies

a specificity that is not there, and is therefore misleading, just as it is

misleading to represent a measurement of 6. 1 inches as “6. 10000 inches”.

What we should say instead is that the factors of 12 are represented by the

multiset [2, 2, 3].

Some programming languages refer to multisets as “bags” (Lewis

1995, p. 71).

It might be worth remarking that it is uniformly agreed that it is es-

sential to the concept of a set that it is extensional. Indeed, extensionality
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(the property of depending only on its members, without counting repe-

titions) is the only feature of sets that is agreed on by all set theorists. It

is similarly essential to the concept of a sequence that it is ordered. So we

should not try to capture the new notion of a multiset by merely extending

the meanings of the words “set” or “sequence”.

A small payoff of the terminology ofmultisets is that it allows us to ex-

press the relationship between exchangeability and partial exchangeability

in a neat way: the two are equivalent when the function T in the definition

of partial exchangeability above is the function that takes a sequence to the

multiset of its members.

The big payoff, for me, of multiset terminology is that for any epis-

temic purpose any exchangeable sequence of observations is equivalent to a

multiset of observations; and once the switch from sequence to multiset has

been made, there is no need for the exchangeability assumption to be given

explicitly any more. On de Finetti’s definition of exchangeability the set

of multisets is exchangeable with the set of exchangeable sequences . . .

but it is perhaps more perspicuous simply to say that every exchangeable

sequence is equivalent to a multiset.17

The reason this counts as a payoff is that simply by talking about

multisets instead of sequences we can avoid talking explicitly about ex-

changeability assumptions. The assumption of exchangeability will still

17. To see this, consider any sequence under the assumption of exchangeability. Permu-
tations in the members of the sequence will not be epistemically relevant to probabilistic
inferences, by definition (using any of the three definitions of exchangeability given above),
and so the sequence can be replaced by themultiset containing the samemembers. Conversely,
consider any multiset of events. It can be replaced by any sequence of events containing the
same members, each with the same number of repetitions as it had in the multiset. A com-
plication in this case is that in order to be sure that a sequence containing the same members
as the multiset exists we have to assume that the members of the multiset can be put into
some order, which is a non-trivial assumption if the multiset is infinite. Fortunately, events
(in statistics) are observation opportunities, and multisets of observation opportunities are
always orderable, e.g. spatiotemporally.
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be present, but our terminology will be immensely simplified. The ide-

alisations involved in using exchangeable events are not idealisations that

we constantly need to be reminding ourselves about; consequently, the ter-

minology of multisets will be more perspicuous, as well as more efficient,

than the terminology of sequences and exchangeability.

6. MERRIMENT

Let us use the phrase statistical measurement to mean a report of one

or more observations made of any physical circumstances (possibly very

loosely defined, and possibly horribly disjunctive) considered as evidence

about the hypotheses of a fixed statistical model. A statistical measurement

is thus a report of the act of observing a particular physical situation, and

not just a decontextualised measurement report such as “6 cm”. (This

distinction is useful in deflating an objection of Lane to the likelihood

principle — an objection which I discuss in chapter 10.)

A statistical measurement need not be part of an experiment. I take

it that an experiment is a premeditated manipulation of the world and

observation of the consequences. There are many differences between

experiments and non-experimental observations; the difference which will

matter particularly for my purposes is that a non-experimental observation

need not be considered as a sample from any particular sample space,

whereas an experimental observation, at least according to the Frequentist

theories which we will meet in chapter 4, is always considered to be a

sample from the sample space consisting of the possible outcomes of the

experiment . . . or so the purest form of the theories recommend, although

as we will see this recommendation is not one which is always followed.
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I will give a unified treatment of non-experimental measurements

and experimental measurements; or, at least, I will recommend such a

treatment. As we will see, the likelihood principle guarantees that such

a treatment is possible. It is only when I discuss rival theories (such as

Frequentism) and objections to the likelihood principle that I will have to

depart from even-handedness between experiments andmere observations.

Bayesians occasionallymention this even-handed character of the like-

lihood principle when criticizing the ways in which Frequentist analyses

force us to take into account the intentions which experimentalists had

when collecting data (Berger & Wolpert 1984, passim). As we will see

in later chapters, Frequentist analyses of experiments take into account

the intentions of the data-collectors, including those of their intentions

which were never actualised (Grossman et al. 1994) — a point which often

amazes and confuses non-statisticians, including the medical and financial

decision-makers who run clinical trials. Chapter 7 and chapter 15 discuss

this issue in more detail.

In contrast to the treatment I give here, most writers on the foun-

dations of statistics believe that statistical methods are meant to apply to

experiments, by which theymean that they’re meant to apply only to exper-

iments. This is true on both sides of the Bayesian/non-Bayesian divide. For

example, of all the versions of the likelihood principle which I have culled

from the literature for chapter 8, only I. J. Good’s versions are stated in a

form which applies both to experiments and to observations (and perhaps

also Lindley’s. Lindley’s is ambiguous, since he sometimes uses the word

“experiment” “in a wide sense to cover cases where no planned experiment

has been performed but merely some results have been observed” (Lindley
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1953, p. 31)). But all of the rest of the definitions could have been stated in

terms of merriments without any loss of plausibility.

Many of the most important scientific observations do not take place

as parts of experiments: one need only think of astronomy to realise

this. One problem with the standard experiment-driven development of

the foundations of statistics is that it forces on us a strict epistemological

distinction between an experiment and any other type of observation.

For this reason alone we should start by talking about observations in

general, regardless of whether the observations are performed as part of

an experiment. We can still specify that we are talking about experiments,

controlled experiments, ideal experiments or whatever when we actually

need to. Additionally, we should try to avoid needing to. If statistics

is a branch of epistemology, then the more narrowly we define its raw

materials the harder it is going to be to put it together with the rest of

epistemology.18

I will often have to talk about “experiments” rather than merriments,

but only in order to accurately reproduce other people’s ideas. In particular,

I will have to talk about experiments a good deal in order to discuss

censoring in chapter 4 and the closely related topic of stopping rules in

chapters 9 to 12 and chapter 15.

18. It might seem to a statistician that restricting herself to experimental situations is
going to give a benefit in terms of efficiency of exposition, because it will minimise the
epistemological assumptions that need to be stated, since presumably the epistemological
assumptions that need to be stated when discussing only experimental data are a subset of
the assumptions that need to be stated when discussing observational data in general. That
may be the case to some extent . . . but the hidden cost is that if she ever wants to embed her
statistical theory in a general theory of epistemology then she will have to work out exactly
which assumptions were minimised, and the supposed efficiency benefit of starting with a
restriction to experimental data will be lost. My preference is therefore for setting off to
theorise about statistics applied to observations in general, and then restricting ourselves to
the subset of observations that are called “experimental results” only if we get stuck. And we
won’t get stuck.
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The fact that the philosophy of statistics does not (I claim) need to dis-

tinguish between experiments and observation opportunities means that

for maximum clarity I should refer to a statistical measurement as some-

thing more long-winded, such as “measurement from an experiment/non-

experiment”. Formaximumclarity andminimum length (a sort ofminimax

procedure), I will abbreviate this to “merriment” ( measurement frrom an

experiment/non-experiment), defined thus:

A merriment is a reasonably well-specified situation in which a
doxastic agent makes and reports an observation which will be
considered as evidence about the hypotheses of a fixed statistical
model. If a merriment is set up by deliberate control of one or
more variables which are believed to be directly relevant to the
hypotheses in question then it is also known as an experiment.

7. JEFFREY CONDITIONING

I will assume throughout that we have observed something relevant to our

hypotheses and that we know what it is. A clever alternative, developed

by Richard Jeffrey (not to be confused with Harold Jeffreys), is to assign

a probability p(xi ) to the veracity of each possible observation xi . On

the assumption that we are performing Bayesian inference, Jeffrey then

proposes that we update our probabilities using the formula

p(h) =
∑

i p(xi )p(h|xi ).19

19. This formula, since it is stated in terms of p (h), assumes a Bayesian ontology: non-
Bayesians, by and large, do not admit that hypotheses have probabilities. Jeffrey’s idea of
taking into account the less-than-certain nature of observation has not yet been adapted to
non-Bayesian methods of statistical inference. But I see no reason why it should not be.
Non-Bayesians are opposed to giving probabilities to objective parameters in general, but I
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Jeffrey’s theory of probabilistic observations seems to me to be one of the

cleverest contributions to epistemology since 1950. Having said that, I

do not intend to adopt it in this thesis. A price I will have to pay is my

assumption that we know for sure what we have observed. This does not

mean that we have to know theory-independently what we have observed:

on the contrary, I will be allowing that our observations are as theory-

dependent as you like. All I will be assuming is that each observation has

an agreed value according to each theory.

I do not have space to discuss in detail, with examples and mathemat-

ics, whether Jeffrey conditioning is ever strictly necessary, but I would like

to suggest that it is not. For suppose that we have a set {xi} of putative

observations, observed with probabilities {p(xi )}, and a set of hypotheses

{hj}. Then instead of using Jeffrey conditioning we can replace the set {hj}

with the set {h′i j}, where each h′i j says that hypothesis hj is true and that

observation xi was made. It would be very time- and space-consuming to

show that this gives the same results as Jeffrey conditioning, firstly because

such a proof would have to be repeated for each different way of making

inferences from the data (and as we will see, there are many) and secondly

because Jeffrey conditioning is not even well defined for most of them, so I

would have to not only apply it but also invent its method of application in

most cases. But in the one case in which the application of my suggestion

is well defined, Bayesian inference, it does agree completely with Jeffrey

conditioning.

imagine that at least some of them could be convinced to give probabilities to observations.
If so, it would be possible to adapt the major non-Bayesian schools of mathematics to Jeffrey’s
reasoning: indeed, complicating P-values and confidence intervals (defined in chapter 4) by
adding a term corresponding to a previously unrecognised type of uncertainty is exactly the
sort of work that mathematical statisticians love to do.
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Howson and Urbach, in response to a similar claim by Skyrms (1986),

complain that although this “will do the trick from the purely logical point

of view, it hardly seems a solution to the problem of finding a statement

describing the content of the [vague] experience which caused the change

in belief ” (Howson & Urbach 1993, pp. 105-106). It may be true that there

is something pragmatically unsatisfactory about the description of the

experience if my suggestion is followed, but my claim is a purely logical

one: I am suggesting that Jeffrey conditionalisation can in principle be

brought within my framework, and hence that the conclusions I draw in

this thesis apply even when Jeffrey conditionalisation is used (at least my

logical conclusions, if not my pragmatic ones). For this purpose Howson

and Urbach’s objection is not relevant. Be that as it may, I will play safe

and retain the assumption that we knowwhat we have observed for the rest

of this thesis, to make sure that my conclusions are definitely applicable to

at least the restricted domain defined by that assumption.

8. THE WORDS “BAYESIAN” AND “FREQUENTIST”

The assumption that there is a rational way to make defeasible inferences

from observations to theories when part of our knowledge is probabilistic

(i.e., always) is central to almost the whole of philosophy of science (pace

Feyerabend 1993), much of epistemology and parts of metaphysics. In the

philosophical analysis of such inferences, the battle lines have traditionally

been drawn between “Bayesians” and “non-Bayesians”: the former believe

in the ubiquity of Bayes’s Theorem in the social and historical processes

guiding the scientific community’s choices between competing scientific

theories, and the latter don’t.
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A leading philosophical anti-Bayesian, Clark Glymour, wrote in his

much-anthologised chapter “Why I am not a Bayesian”,

It is not that I think the Bayesian scheme or related probabilistic
accounts capture nothing. On the contrary, they are clearly per-
tinent where the reasoning involved is explicitly statistical [but
are less pertinent] so far as understanding scientific reasoning
goes[.]

(Glymour 1981, chapter XII)

The distinction which Glymour draws between Bayesians and non-Bayes-

ians — the distinction in terms of which he is not one — is not the

same as the distinction between Bayesians and non-Bayesians as drawn

in terms of statistical theory. Statistical Bayesians believe in the ubiquity

of Bayes’s Theorem only in the correct application of statistical models to

fully interpreted observations. In other words, statistical Bayesians believe

in applying Bayes’s Theorem within a set of precise alternative theories,

not within any set of theories whatsoever. This is a crucial distinction.

Leaving aside the issue that the philosophical Bayesian’s position is

often primarily descriptive while the statistical Bayesian’s position is fully

normative, the main difference between the two is due to the fact that the

adequacy of both statistical models and observation reports can be disputed

whether or not one disputes the methods used to draw inferences from one

to the other. Statistical Bayesians deal with models and observations that

for one reason or another can be assumed to be unproblematic, at least

tentatively and temporarily; philosophical Bayesians by and large do not.

So what statistical Bayesians say, nomatter how correct, barely even begins

to satisfy the demands of philosophical Bayesians.
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The terminological distinction that I am drawing between philosophi-

cal and statistical Bayesians is not commonly noticed; rather, the philosoph-

ical and statistical literatures have simply defined the term independently

of each other. The theory’s namesake, Thomas Bayes, was arguably not a

Bayesian at all, so neither use of the word has clear etymological pride of

place. For what it is worth, though, the earliest campaigner for either of

the modern uses of the word, I. J. Good, used it primarily in the statistical

sense.20

It is statistical Bayesianism that I will be discussing in this thesis.

Within these four walls I will therefore refer to it simply as “Bayesianism”.

If it were necessary to pick one to be labelled Plain Vanilla Bayesianism in

the world at large then perhaps that should be the statistical version too,

but I leave that for others to decide.

The word “frequentist” has its problems too. It is used by most au-

thors to denote statistical methods which evaluate results according to

the frequency with which certain hypothetical long-run outcomes occur

according to a “null” hypothesis. Other authors reserve the word “fre-

quentist” for the frequency view of probability. The frequentist view of

probability says that probabilities are defined as limits of sequences of long-

run outcomes. There are both historical and normative links between the

frequentist view of probability and the frequentist view of statistics, but

neither the normative nor the historical links are straightforward. Not all

supporters of frequentist statisticalmethods, nomatter how clear-thinking,

hold the frequentist view of probability, while some of the staunchest critics

20. See (Fienberg 2006) for the history of the emergence of statistical Bayesianism. Fien-
berg pays very little attention to the philosophical literature, even though he is in a research
group with Glymour: this nicely illustrates the independent development of the two types of
Bayesianism.
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of frequentist statisics do hold the frequentist view of probability (such as

A. W. F. Edwards (1972, p. xv)). A very small number of works on the

foundations of statistics, notably (Seidenfeld 1979), restrict the word “fre-

quentist” to its probability sense so clearly and explicitly that they avoid

confusion, but this is at the expense of being unable to discuss the statistical

literature in its own terms.

A number of alternatives to the term “frequentist” are in use. Some

authors use “classical” to mean what I mean by “frequentist”. But that is

no better than “frequentist” from the point of view of contradicting the

terminology of the philosophy of probability, because many other authors

use “classical” probability tomean probability assigned according to simple

symmetry principles as exemplified by pre-Bayesians such as Laplace; so

“classical” in that context is close to meaning the opposite of frequentist.

Some authors use “orthodox” to mean what I mean by frequentist; but

that is no good either, partly because it implies that there is only one such

position, while I discern at least two frequentist positions, and also because

what is orthodox is subject to rapid change.

Yet other authors use the phrase “error rate procedures” to describe

what I am calling “frequentist statistical procedures”. A common rationale

for this is that frequentist procedures guarantee that their results will be

in error at most a certain fixed proportion of the time (see chapters 3–

5 and chapter 4 for details). This rationale is mistaken, though, as the

more thoughtful proponents of frequentist procedures are quick to admit

(Casella & Berger 2002). The actual error rate of a procedure depends

on facts which are typically unknown and which are almost never part of

the statistical model even if they are known. This dependence of error
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rates on unknown properties of the world is masked by the fact that the

primary “error rate” of a frequentist procedure is calculated conditional

on one privileged hypothesis (the “null hypothesis”): thus, it is not the

expected rate of errors at all, but only the rate of errors to be expected

if the null hypothesis is true (and, additionally, if the statistical model is

totally accurate, including accounting for all possible sources of error in

measurements). But we do not know whether the null hypothesis is true (if

we did, we would not need to make any statistical inference), so this “error

rate” is not an expected rate of errors at all.21

A secondary error rate which is often calculated, the “power” of a

frequentist statistical test, can have either one of two meanings. It may be

the minimum, or infimum (greatest lower bound) in the continuous case, of

the proportion of errors that would be expected if any one of the non-null

hypotheses were true: in other words, the minimum of a set of expected

error rates, not actually an error rate itself. Alternatively, the power of a

test may be the proportion of errors on the assumption that one particular

alternative hypothesis is true, in which case my criticism of assuming the

null hypothesis applies (except in the vanishingly rare case in which the

alternative hypothesis chosen is very likely to be exactly true). Applied

statisticians generally take the latter tack, and so will I.

21. To take a realistic example, many surgical procedures have been believed to work for
hundreds of years, but there is a recent fashion for evaluating them statistically just in case their
apparent effectiveness is illusory (Grossman & Mackenzie 2005). The statistical evaluations
which are used are themselves evaluated by calculating an error rate conditional on the null
hypothesis (in other words, assuming the null hypothesis to be true), and the null hypothesis
(for legal and ethical reasons) is always that the surgical procedure is completely without effect.
As a result, epidemiologists often find themselves evaluating surgical procedures which we
are practically certain have some effect using statistical procedures chosen on the basis of
characteristics which they only have on the assumption that the surgical procedures have no
effect.
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So “error rate” procedures do not give us expected error rates; nor do

they give us actual error rates. So the term really is a misnomer.

For this reason, I believe it is important to continue to use “frequentist”

rather than “error rate” to describe such procedures, even though taken

out of context the word is ambiguous. In any case, I am working on the

foundations of statistics, and the literature on this topic mostly uses the

word “frequentist” to refer to statistical procedures based on error rates, so

it is safe for me do the same. I will capitalise it from now on to emphasise

that I am using it in a way which some may find idiosyncratic.

While discussing terminology, I have already produced an argument

against the use of Frequentist procedures, namely that we tend to think

they have guaranteed error characteristics when in fact they do not. But

there are much more substantive arguments to come — arguments which

do not depend on whether we are misled by terminology. I will lay the

groundwork for these in chapter 4 and give some of them in detail in

chapter 7.

9. OTHER PRELIMINARY CONSIDERATIONS

My loose talk about inferences from observations to hypotheses may have

ignited a worry about the theory-dependence of observation. Happily, the

theory-dependence of observation, although real, is not a problem I need

to take into account explicitly. The nature of the epistemic framework

within which statistical inference takes place is that we are interested in

the observation as interpreted by the various hypotheses. That is all we

can possibly mean when we say that each hypothesis assigns a precise

probability to the observation. So either we implicitly but fully embrace
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any theory-dependence of observation that may crop up, or we give up on

doing statistical inference.

I assume a classical logic, although I will note a point in chapter

13 in which to do otherwise would make an interesting difference to my

conclusions.

In the statistical literature, statistical inference is claimed to license

partial beliefs or credences (according to most members of the Bayesian

school) or beliefs (according to practically all authors before 1920) or

actions (according to the Neyman-Pearson school). In the rest of this

thesis, I will present results which are very nearly neutral between these

options.

Even when I discuss credences in detail, I will not be dealing with all

of the tricky questions about belief which are important to the philosophy

of mind. In particular, I will avoid worrying about what sorts of systems

can have beliefs. It will be enough if I can say something useful about the

probabilistic beliefs of adult humans in a numerate Western culture. But

there is no need to assume that what I have to say is only applicable to

humans, and so instead of calling my protagonists “humans” or “people”

I will call them “doxastic agents” (agents with partial, or probabilistic,

beliefs). I will also sometimes call them “epistemic agents”, to fit the

language in which some of the issues I discuss are traditionally debated;

in particular, from chapter 4 onwards I will talk a lot about “epistemic

probabilities”, which are never called “doxastic probabilities”, and then I

will use “epistemic agent” to match. In all cases I mean “epistemic agent”

and “doxastic agent” to be semantically interchangeable.
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— 3—
Survey I: Bayesianism

1. INTRODUCTION

The next three chapters survey the existing normative theories of inference

from data to probabilistic hypotheses. While the main purpose of these

chapters is simply to expound what theories there are, a subsidiary purpose

is to show that not all of the possible theories of statistical inference have yet

been stated — not even all the possible theories which use the framework

set out in chapter 2. (This is, unsurprisingly, easy to show; see the section

Other pure likelihood methods in chapter 5 for an example.)

Surprisingly, there are only five such theories by a rough classifica-

tion22 and only fifteen even by a more precise classification23. Classifica-

tions vary, since one man’s theory is another man’s amendment, but by

any classification there are very few such theories . . . indeed, classifica-

tions in the literature often stop at two, typically Subjective Bayesianism

and Neyman-Pearson Frequentism. If any other theories have ever been

invented, they have gone unnoticed, and not just by me.

22. Bayesianism, Frequentism, pure likelihood methods, pivotal inference and plausibility
inference.
23. Subjective Bayesianism, Restricted Bayesianism, Empirical Bayesianism, conjugate ing-
norance prior Bayesianism, Robust Bayesianism, Objective Subjective Bayesianism, Neyman-
Pearson Frequentism, Fisher Frequentism, Structural Inference, the method of maximum
likelihood, the method of support, fiducial inference, pivotal inference, plausibility inference
and, arguably, Shafer belief functions — all defined in the following three chapters.
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There are of course many more than fifteen theories of probability,

and many theories concerning the mathematics of statistical distributions

and error rates. When I say there are only fifteen theories of statistical

inference, I mean that there are only fifteen distinct, more or less complete

answers to the following question:

Given that a doxastic agent is considering some precise, prob-
abilistic scientific hypotheses and comes into the posession of
some relevant scientific data, how should she alter the beliefs or
actions which follow from taking one or another of the hypothe-
ses as true, assuming that she has enough time, patience and
computing power to be fully rational?

Each of the fifteen theories is an answer to this guiding question.

Tell a layperson that the answer to this question is contentious —

that there is more than one theory — and he will be surprised. And yet

there is no consensus on the answer either in philosophy or in theoretical

statistics; and the current consensus in applied statistics is a bad one, as we

will see in chapter 7.

The meaning of each of the theories which I will survey is well

operationalised and therefore relatively uncontroversial (by the standards

of philosophical theories). What’s controversial is which theory is right,

if any. Perhaps none of these theories is right. Although it seems to me

to be a requirement of the possibility of rationality that there must be

some optimal theory of statistical inference, the search for such theories

is only a little over a hundred years old, and (as I will show) all of the

existing theories have prima facie flaws, so it is plausible that we have not

yet come up with a good theory. For this reason among others, the overall

68



conclusion of this thesis will be not that we ought to use one particular

theory, but only that we ought to obey principles which rule out some of

the competing theories.

I will assume for the purposes of this survey that a full utility function

for all members of H is not available (or is available but disputed). I make

this assumption only to save space. If a full utility function were available

we would be in the realms of statistical decision theory. The various

precise statistical decision theories which have been proposed each imply

a certain precise theory of statistical inference, and as it happens (perhaps

for historical reasons) all of these imply either one of the Bayesian theories

detailed in this chapter (for maximum expected utility decision theories) or

one of the Frequentist theories (forWald-style minimax decision theories).

Hence the range of theories of statistical inference would not be altered if

I took decision theory into account. A full account of statistical inference

would certainly include some discussion of decision theory; but to include

that discussion herewould use considerable space at the expense of clarity.24

I included a caveat about time, patience and computing power in my

guiding question in order to sidestep the recently developed theory of

bounded rationality, a theory which studies the consequences of the fact

that real-world epistemic agents have to cut short the computations they

might have liked to perform in order to (for example) get out of the way

24. To take a random example of how clarity would suffer: a statistical procedure which
does not lead to incoherence undermaximum expected utility theory is known as “admissible”,
and it can be shown that only Bayesian procedures are admissible; to define the terminology
required to describe this result precisely would take some time, but would not give us any new
methods of statistical inference; nor would it help us to see which methods are preferable,
unless I could also give a convincing defence of the universal applicability of maximum
expected utility theory, which in turn would require assumptions which would distract from
the main thrust of my work. In later chapters I will show that the likelihood principle can be
defended without requiring any assumptions about utility.
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of sabre-toothed tigers, or get a company report in on time (Simon 1982,

Gigerenzer et al. 1999, Gigerenzer & Selten 2002).

We do not need to worry that bounded rationality might have sup-

planted the approach I take in this thesis, for at least three reasons.

Firstly, I am dealing primarily with scientific inference, in which it is

possible to spend a great deal of time and computational power on statisti-

cal inference. The issues that crop up in the bounded rationality literature

are primarily (although admittedly not exclusively) about the constraints

involved in cases in which an epistemic agent has extremely little time avail-

able to make a decision, and the evidence taken to support the importance

of bounded rationality is evidence of single biological organisms solving

personal decision problems.

Secondly, I bite a bullet and admit that the type of rationality investi-

gated in this thesis is an idealisation.

Thirdly, and most importantly, the bounded rationality literature is

almost entirely descriptive: it consists almost entirely of descriptions of

how epistemic agents actually behave, and of psychological and philosophi-

cal consequences of those descriptions; it is therefore no threat to my views

on how inferences ought to be made.

In response to my third point, the bounded rationality literature is

sometimes taken to be normative as well as descriptive. It is hard to

be absolutely sure whether this reading is right or wrong, but I think

it is wrong. Consider the following quotations from a representative

paper in the bounded rationality literature. On the one hand, the bounded

rationality position is set up in clear opposition to both the statistical view
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and Kahneman and Tversky’s “heuristics and biases” view (which describes

actual departures from a probabilistic norm). It describes these views thus:

[A] discrepancy between the dictates of classical rationality and
actual reasoning is what defines a reasoning error in this pro-
gram. Both views accept the laws of probability and statistics as
normative, but they disagree about whether humans can stand
up to these norms.

(Gigerenzer & Goldstein 1996, p. 650)

. . . and criticises such views for

lead[ing] us to believe that humans are hopelessly lost in the face
of real-world complexity[.]

(Gigerenzer & Goldstein 1996, p. 651)

Passages such as this might be (and often are) read as saying that the

normativity of the old program is wrong and is to be replaced by a new

normativity, that of bounded rationality. On the other hand, and on the

very same page, Gigerenzer and Todd say:

[bounded rationality] algorithms are designed to be fast and fru-
gal without a significant loss of inferential accuracy[.]

(Gigerenzer & Goldstein 1996, p. 651)

This implies that there is some other standard of inferential accuracy, apart

from bounded rationality, which bounded rationality approximates to. It

is implicit in the experimental work of the bounded rationality school that

there is such a standard and that that standard of inferential accuracy

is Bayesian — see (Gigerenzer & Goldstein 1996) again and, especially,

(Gigerenzer et al. 1999).
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Hence, the normativity of the statistical view of inference is both

denied and taken for granted. It seems most likely to me that the authors

of this literature are not in the least confused, and that they regard their

view as not normative, but find it hard to say so because the normative

character of the view they oppose has lent it stature. Be that as it may,

as long as bounded rationality measures its correctness on the basis of its

approximate agreement with inferential statistics it will be impossible for it

to be any better justified than inferential statistics is, and hence it poses no

normative threat.

So, a fully normative version of bounded rationality is no better jus-

tified than inferential statistics is, at present; but maybe it is plausible that

it will be better justified in the future.

Does this mean that the conclusions I draw here are hostage to the

possibility that bounded rationality gives us the correct description of our

epistemic constraints? Not at all, for two reasons:

(1) Of course we are all bound by computational constraints, just as

bounded rationality supposes. But in a world of large scientific re-

search budgets and fast computers, what happens when we try to

estimate the size of those constraints? It may well be that zero is

a better estimate of our constraints than any particular finite num-

ber. In that case, there is nothing particularly inaccurate about my

theory at all (even though it is not perfectly accurate), because any

other estimate of what our constraints are would also be inaccurate

to some degree. In other words, unbounded rationality may be the

most rational estimate of what type of bounded rationality we employ

in science.
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(2) My discussion of unbounded rationality is a limiting case of bounded

rationality: it is what bounded rationality becomes as the bound tends

to infinity. Even if normative bounded rationality turns out to be what

we will all end up studying one day, it will be useful (and, at a guess,

probably essential) to have a well worked out theory of what happens

in the limit.

I see these as decisive reasons to ignore the fact that the gurus of bounded

rationality ask us to reject “the laws of probability and statistics as norma-

tive” (Gigerenzer et al. 1999).

For each theory described in the next three chapters, I will give its

main originators, a summary of its tenets and a brief comment. I will

not attempt to give a full justification of any of these theories, because I

am not sure that any of them is right, and because for the purposes of

defending the likelihood principle it does not matter if they are all bad

theories. The only thing I need to show conclusively is that the theories

which conflict with the likelihood principle are bad. In later chapters I

will discuss foundational issues which reflect (badly) on the Frequentist

methods and (well) on methods compatible with the likelihood principle.25

2. BAYESIANISM IN GENERAL

The Bayesian position emerged extremely gradually from the work of

25. Methods compatible with the likelihood principle are given by: the pure likelihood
theory, the maximum likelihood theory, and all the Bayesian theories with minor exceptions
such as some ill-named versions of the Empirical Bayesian theory.
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a number of 18th-century authors including Thomas Bayes (1763).26

Bayesianism was not formulated clearly until around 1920.27

Bayes’s Theorem says:

p(a|b) = p(b|a) p(a)
p(b)

, provided b 6= 0.

Bayes’s Theorem (unlike Bayesianism) is uncontroversial. Whenever p(a),

p(b), p(a|b) and p(b|a) all exist and p(b) is non-zero, Bayes’s Theorem can

be proved from any of the standard axioms of probability. My favourite

proof is as follows:

p(a&b) = p(a|b) p(b)

= p(b|a) p(a) by symmetry of “&”.

Rearranging, p(a|b) = p(b|a) p(a)
p(b)

, provided b 6= 0.

For example, what is the probability of drawing the Ace of Hearts, given

that I’ve drawn an unknown Ace from a pack of cards? Letting a stand for

26. Bayes’s own work, although pioneering, did not clearly state either its epistemic or its
mathematical assumptions, and so it is arguable that Bayes did not found Bayesianism, despite
the popularisation of Bayes’s work by his contemporary Price, who immediately saw that
it would be a cornerstone of future attempts to quantify the scientific practice of induction
(Bayes 1763, p. 371).

27. Bayesianism probably developed from unpublished work of Johnson (Jeffreys 1961, p. i),
after which it was quickly developed into a mature theory. Wrinch and Jeffreys have some
claim to having invented modern Bayesianism in their (1919), but their work did not at first
attract the attention it deserved — perhaps because it was ahead of its time, or perhaps
because its objectivist foundations (described below) failed to distinguish it sufficiently from
other statistical methods available at the time.

The modern meaning of the term “Bayesian” is probably due to I. J. Good (Smith
1995). A thorough overview of the history of Bayesian inference has yet to be written,
and many questions about the relationships of early Bayesian views to each other are not
settled, although some aspects of its separate development into two non-equivalent systems
by Jeffreys and de Finetti are well documented. From the 1950s onwards a large number
of authors produced systems which extended on one of those two early systems or which
proposed various compromises between them.
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the event of drawing a Heart and b stand for the event of drawing an Ace,

we can use Bayes’s Theorem to confirm that the answer is 1/13 × 1/4
1/13 = 1

4 .

Bayesians believe that the quantities mentioned in Bayes’s Theorem

always exist (or, in de Finetti’s system, can always be treated as if they

exist), for any stateable a and b. Hence, the probability of any hypothesis

conditional on any set of observations can be calculated, by setting a = h

for any h ∈ H and b = xa (in the terminology of chapter 2), so that

∀h ∈ H , p(h|xa) =
p(xa|h) p(h)
p(xa)

, provided p(xa) 6= 0.

(Henceforth, I take the proviso that the denominator of the right-hand side

not be zero as implicit.)

The term p(h), considered either as a single probability or as a func-

tion over the hypothesis space (H ), is known as a prior probability or prior

probability distribution respectively. The single word “prior” is often used

ambiguously (or, rather, polymorphically) to refer to either a prior proba-

bility or a prior distribution. Theword “prior” need not carry any temporal

weight: in some versions of Bayesian theory, the prior is meant to be known

before xa is known, but in most versions this is not required. Many writers

have bemoaned the choice of the word “prior”. A word with no temporal

connotations, such as “ulterior”, would be better, but unfortunately it seems

too late to change this.

The term p(h|xa), considered either as a single probability or as a

function over H , is known as a posterior probability or posterior probability

distribution respectively. (Just as the word “prior” need not carry any

temporal weight, nor need the word “posterior”.)
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The term p(xa|h), considered as a function over a hypothesis space, is

the likelihood functionwhich I introduced in chapter 1. Likelihood functions

are discussed in detail in chapter 8 and chapter 13.

The denominator of the above equation, p(xa), does not need to be

calculated, provided that H exhausts the hypotheses considered possible

in the merriment in question. (Recall from chapter 2 that a merriment

is an experiment or a non-experimental observation.) This is because

p(xa), unlike p(xa|h), does not depend on h, so that instead of using Bayes’s

Theorem in full for inferences about h one can use

∀h ∈ H , p(h|xa) ∝ p(xa|h)p(h)

instead; and if the constant of proportionality is needed one can calculate

it simply by dividing by a factor which makes the function p(xa|h)p(h) add

up to 1.28

Even better, one can get rid of the normalising factor completely when

comparing two hypotheses, h1 and h2, by writing

p(h1|xa) =
p(xa|h1) p(h1)

p(xa)

and

p(h2|xa) =
p(xa|h2) p(h2)

p(xa)

and then dividing the two equations to get

28. Of course, this factor is always
∑

h∈H p (xa|h)p (h) if H is finite and
∫
h∈H p (xa|h)p (h)

otherwise.
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p(h1|xa)
p(h2|xa)

=
p(xa|h1)
p(xa|h2)

p(h1)
p(h2)

with no mention of p(xa) on the right-hand side. (p(xa|hi ), in contrast to

p(xa), is always known: that it is known is a corollary of the fact that hi

is fully specified.) This method of getting rid of p(xa) has been known

since at least the 1920s by followers of Jeffreys and de Finetti, and was

independently discovered by Salmon in 1996 in an important paper in

which he replies to criticisms of Bayesianism by Glymour (Salmon 1996).

Thus, Bayesianism allows us to compare simple hypotheses in the

light of data in an appealingly straightforward way.

Bayesianism is, I think, unavoidable for those who believe that uncer-

tainty is always best described by the use of probabilities. Lindley (1990,

p. 214), for example, has described Bayesianism as the natural result of

“adopting probability as the language of science (unlike a classical statis-

tician who only uses it as part of the language, denying its validity for

hypotheses or parameters)”. Whether or not one accepts Lindley’s view,

it is hard to deny that probabilities are the only way to quantify epistemic

uncertainty29 in many scientific situations, and this leads to the natural

use of Bayesianism in at least those cases, provided its drawbacks can be

swallowed.

The only philosophical drawback of Bayesian methods — but it’s a

biggie — is that many authors dispute the existence of the term p(h)

for interesting hypotheses h, while some dispute its existence for any

hypothesis h. Until recently there were also computational drawbacks

29. Thanks to Mark Colyvan for pointing out that this point does not apply to the semantic
uncertainty introduced by vague and ambiguous language.
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to Bayesianism, but nowadays the necessary calculations can be done by

brute force on a cheap computer in most cases.

Recall that p(h|xa) is known as the “posterior probability” of the hy-

pothesis “on” or “given” the observation: “posterior” because it is calculated

after the observation has been made (except in cases in which the whole

analysis is hypothetical, in which case xa will not be an actual observa-

tion, but will instead be a possible observation treated as actual within a

fictional story). According to the Bayesian view of statistical inference,

the set of posterior probabilities for all hypotheses of interest gives us

the probability that each hypothesis is true. (This is the probability rela-

tive to the inference situation; for the Bayesian there is no such thing as

probability simpliciter, unless it is merely convenient shorthand for one or

another type of indexical or conditional probability— one example of such

a scheme of convenient shorthand is given in chapter 2.) The posterior

probability, according to Bayesians, therefore tells us everything we can

possibly learn from an inference situation (conditional on the model being

reasonable). One might want to add as a rider to this that sometimes one

can draw no conclusions in a given situation: this gives a form of Restricted

Bayesianism (see below).

While setting up an appropriate mathematical model of a merriment

is roughly as difficult for a Bayesian as it is for anyone else, the calculation

of posterior probabilities given a model is easy. There are no ad hoc or

debatable steps in this procedure (although there are many ad hockeries

typically involved in choosing the mathematical model in the first place

. . . and fortunately so, or Bayesian mathematicians would have nothing to

write research papers on).
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The fact that posterior probabilities can virtually always be calculated

gives Bayesians a virtually complete theory of inference — much more

complete, indeed, than any of the competing theories (except, arguably, for

the Neyman-Pearson theory, the only non-Bayesian theory which is ever

claimed to apply to absolutely all statistical inferences).

To summarise, Bayesian statistical inference is based on two premises:

(i) Bayes’s Theorem is applicable to any statement of conditional prob-

ability, provided that the relevant probabilities are defined. (We will

see below that, according to some but not all versions of Bayesian

inference, all relevant probabilities are always defined.)

(ii) The set of posterior probabilities tells us everything we can know

about uncertain propositions, given the mathematical model and ob-

servations available to a particular doxastic agent at a particular time.

BAYESIAN CONFIRMATION THEORY

Two recent schools of thought raise questions about the standard termi-

nology of Bayesianism.

Firstly, a number of philosophers, relatively recently, have proposed a

school of inference called “Bayesian confirmation theory” which we need

to distinguish from Bayesianism simpliciter. According to these recent

Bayesian confirmation theorists, there is some function of the data which

tells us to what extent data confirm a hypothesis and, crucially, this “con-

firmation” function need not be (and often is not) a function of the poste-

rior probability distribution. Steel (2003) has recently shown that some

such functions are incompatible with Bayesianism as defined above. Since

Bayesian confirmation theorists see a need for a theory of confirmation
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not based on the posterior distribution, they are generally not Bayesians

according to the bulk of the literature on Bayesianism, despite their name.30

Most Bayesians see no need for a single confirmation function separate

from the posterior probability function. These Bayesians — for example,

Howson and Urbach (1993, pp. 117–118)— note that if the posterior p(h|e)

is greater than p(h) then e confirms h, but they do not claim to have told us

to what numerical extent e confirms h. The basis of Bayesianism is that the

posterior probabilities tell us the probabilities of all the hypotheses in H

conditional on the observation. If we like we can compare these probabil-

ities to the probabilities of the same hypotheses before we conditioned on

the observation (in other words, we can compare the posterior distribution

to the prior distribution). There is more than one way to compare these

two functions — one can subtract them, divide them, perhaps take more

complicated functions of them— but the question of how one should com-

pare them has not seemed a very interesting question to most Bayesians

who, after all, already hold, in the posterior distribution, the answer to

much more interesting questions. Bayesians say, in effect (and sometimes

in actuality), “Look: here’s exactly, quantifiably, what we thought before

we saw the data; here’s exactly what we thought after we saw the data;

now are you telling us we haven’t shown you the effect of the data on our

beliefs?”31

30. To make things even more confusing, they may be Bayesians on anybody’s definition,
if their beliefs about confirmation functions happen not to contradict orthodox Bayesianism.
And as if that wasn’t confusing enough, some authors use “Bayesian confirmation theory” to
mean simply Bayesianism, with no mention of confirmation functions at all (Strevins 2004).

31. See (Hawthorne 2005) for a counter-argument to this position. I do not wish to give
space to counter- or counter-counter-arguments, since the question at issue is tangential to
the main work of this thesis.
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There is a small literature on confirmation functionswritten by ortho-

dox Bayesians. These works argue that the confirmation function obtained

by dividing the posterior by the prior (resulting in the likelihood ratio —

essentially the same quantity as is foregrounded by the likelihood principle)

is the most desirable. I will discuss the rationale for this while discussing

Barnard’s views in chapter 8.32 Orthodox Bayesians, regardless of whether

they accept this argument or not, rarely give it any importance. Conse-

quently, the school of thought that says that Bayesianism as formulated by

premises (i) and (ii) above is already complete is proceeding almost inde-

pendently of the school of thought that says that Bayesianism needs to be

supplemented by a confirmation function.

There is no good reason for this schism in the use of the term

“Bayesian”.33 One resolution of the problem would be to use the words

as they are currently used by both schools of thought, on the clear under-

standing that “Bayesian confirmation theory” is not always Bayesian; but I

believe this resolution is not feasible. We can nomore expect people to bear

in mind that “Bayesian confirmation theory” is not always Bayesian than

we can expect people to remember that GeorgeW. Bush’s “environmental”

legislation is not environmental. Instead, it would be best if the “Bayesian

confirmation theorists” would drop the tag “Bayesian”. I would like to

emphasise that to say that “Bayesian confirmation theory” is misnamed, as

I do, is not to disparage it; it is only to wish on it a separate existence.

32. Good, who is rather proud of being prolific, counts 33 publications in which he has
made this point, and says that “[w]hat I say thirty-three times is true” (Good 1983, p. 159).

33. Indeed, such a schism, to the extent that it exists, is counterproductive, because it
confuses our reading of the literature. Worse, it retrospectively confuses our reading of the
pre-confirmation-theory Bayesian literature.
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I propose to restrict the use of the word “Bayesian” in this thesis to

its only unconfusing meaning, which is the one given to it by the founders

of Bayesian theory and the vast majority of its practitioners: namely, the

meaning given by the two premises above.

Secondly, Bayesianism, as defined above, is about the inferences avail-

able to a single doxastic agent. Since some schools of Bayesians (the

Subjective Bayesians, as defined below) see these inferences as depending

on subjective judgements, it is not clear that there is any reason for even

two doxastic agents to agree about inferences, never mind for a whole

scientific community to agree. This has always been seen as a problem

(Lindley 1980), and it is beginning to be addressed in detail (Kadane et al.

1999). Some, in a pragmatic frame of mind, address it by giving reasons

to think that agents’ subjective views in fact agree closely enough that

their scientific inferences will be effectively the same — J. O. Berger has

a sustained research program showing from a mathematical point of view

that this will often be the case, and Freedman and Spiegelhalter among

others have demonstrated it very successfully in practice with oncologists.

These pragmatists are clearly right about at least some situations, since

whenever a large amount of data is available (large relative to whatever

initial disagreements the doxastic agents have) initial disagreements will

be swamped by the data in the sense that for any fixed hypothesis, any

fixed initial level of disagreement about that hypothesis and any fixed

small number ε, there is an amount of data that will cause all the epstemic
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agents to agree about the probability of the hypothesis to within ε. This

theorem is an easy consequence of the Bayesian premises.34

But the pragmatic school of thought which says that all is well is

seen as wishful thinking by others, who have proved theorems showing

that in some circumstances it is impossible for a group of doxastic agents

to reach joint inferential conclusions (Kadane et al. 1999), either because

insufficient data is available or because it is necessary to take into account

the doxastic agents’ utilities as well as their probabilities (or, in old-school

language, their desires as well as their beliefs). If this second group of

theorists is right (and I am afraid it is), we need a new theory which tells

us how to make joint inferences when individual judgements vary in a way

which makes strict Bayesian methods ineffective. This new theory is likely

to be based on Bayesian theory, with the traditional Bayesian theory as a

limiting case in the large-data, low-disagreement case. The new theory

may or may not be called “Bayesian”. (Seidenfeld, for one, is agnostic about

whether it should be.) I will not be discussing joint decision-making in

this thesis, and I will be consistently agnostic about Bayesianism, so I do

not urgently need to decide these questions.

3. SUBJECTIVE BAYESIANISM

All forms of Subjective Bayesianism hold that the Bayesian equations given

above are applicable to all cases in which a doxastic agent is uncertain

about what inferences to make from an observation. To the best of my

34. It may be worth noting the order of the main quantifiers here: ∀ required levels of
agreement, ∃ an amount of data which will produce such agreement. It would be nice
if ∀ amounts of data greater than some value, ¬∃ a level of disagreement too great to
withstand the irenic power of the data; but sadly this is not so.

83



knowledge, all Subjective Bayesians agree that may be very little objec-

tive evidence on which to base a prior probability distribution. It follows

from these two points that all Subjective Bayesians hold that there is a

non-objective component to any fully specified prior probability distribu-

tion. This non-objective component may be subjective or intersubjective.

If it is subjective then it depends on an individual’s cognitive state in a

way which cannot be fully justified by that individual to another rational

doxastic agent; if it is intersubjective then it depends on a position jointly

reached by a community of doxastic agents which cannot be fully justified

by that community to an external rational doxastic agent. The notion of

justification in play may be vague or strict. If strict, then there is a fun-

damental epistemic difference between Subjective Bayesians and Objective

Bayesians. If vague, then there is no such fundamental difference, but there

remains a major methodological difference, for very few prior probability

distributions are actually held to be objective by communities of scientists;

and hence, in the absence of practical, comprehensive ways of determining

whether a prior probability distribution ought to be accepted by a commu-

nity, there remains a great divide between those who think that statistical

analysis need not wait on such agreement (subjectivists) and those who

think it must wait. In summary, Subjective Bayesians analyse situations in

which there is incomplete agreement about prior probability distributions

by using an individual’s or community’s choice of prior, however estab-

lished, while Objective Bayesians analyse such situations by waiting for

agreement or (as we shall see below) by proposing general methods of

producing priors which can force such agreement.
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There are no differences between the various schools of Subjective

Bayesianism that matter for the limited purposes of this thesis (although of

course there are many differences which are interesting in their own right),

except for disagreements between individual theorists about the definition

and role of the likelihood principle, which I will discuss in detail in chapter

8 and chapters 9 to 12.

THE UNIQUENESS PROPERTY OF SUBJECTIVE BAYESIANISM

A number of authors have produced sets of axioms under which Subjec-

tive Bayesianism can be proved to be the unique rational way to conduct

statistical inference. The founder of this school of thought — and, indeed,

the founder of the modern school of subjective probability — was Keynes

(1921).35 Savage (1954), extending the work of Keynes (1921) and Ramsey

(1978), laid the foundations for modern statistical decision theory (perhaps

best exemplified by Raiffa & Schlaifer 2000) by showing that if both precise

but subjective prior probability distributions and precise utility functions

are assumed known for a given doxastic agent then natural axioms of ra-

tionality and mathematics require that agent to be a Subjective Bayesian.

Philosophical objections to this claim have concentrated on the existence

of prior probability and utility functions. Since my goal is not to defend

Bayesianism, Iwill not attempt to show that Savage’s axioms are reasonable

in general. However, there are some sub-domains of statistical inference

in which both exact prior probability distributions and exact utilities are

35. It is sometimes said that Keynes believed only in objective or logical probability, but
this is not the case. As he summarises his own work, “The method of this treatise has been
to regard subjective probabliity as fundamental and to treat all other relevant conceptions as
derivative from this” (1921, p. 282). He may not have intended “subjective” in the same way
as modern subjectivists, who mostly follow de Finetti (de Finetti 1972), but he certainly did
not intend “subjective” to mean either objective or logical.
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uncontentiously available (for example, statistical puzzles in which priors

can be set by a godlike adjudicator and utilities can be set by fiat), and in

these sub-domains Savage’s theory is uncontentious, at least for a single

doxastic agent.

4. OBJECTIVE BAYESIANISM

Objective Bayesianism includes any school of thought which holds that

Bayes’s Theorem can be used ubiquitously or almost ubiquitously but

which, unlike Subjective Bayesianism, does not call for any subjective prior

probability distributions. There is an important ambiguity here: an Ob-

jective Bayesian theory may hold that subjective priors are never required

(equivalently, may silently render them unnecessary), or it may hold that

subjective priors are sometimes not required. Both of these cases contrast

with Subjective Bayesianism, which holds that subjective priors are always

required. Of the theories I discuss in this section, Restricted Bayesian-

ism and Empirical Bayesianism are of the former type (subjective priors

never required), while Jeffreys’s and Jaynes’s theories are of the latter type

(subjective priors sometimes not required).

Objective Bayesian methods are thus more objective than Subjective

Bayesian methods, but apart from that I make no positive claims for their

objectivity. They do not have all the features which some might think are

necessary to a completely objective system.36

36. To take a trivial example of such a feature, all the theories in this whole thesis make
reference to mind-dependent entities in the form of statements of hypotheses. A less trivial
example, but perhaps also less of a barrier to objectivity, is that none of the theories in this
section can be stated without epistemic probabilities — as opposed, especially, to Neyman’s
theory in which, as we will see later, the probabilities are remarkably non-epistemic.
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RESTRICTED BAYESIANISM

Restricted Bayesianism is my own term for the type of Objective Bayes-

ianism which holds that we should use Bayesian methods only when a

prior probability distribution has been given to us by an objective process

separate from the merriment we are analysing. Perhaps surprisingly, there

are many applications for it. For example, almost the whole of clinical

epidemiology (the study of the determinants of medical success and fail-

ure) can use Restricted Bayesian techniques, because an objective prior

probability distribution is given by the rates to date (not counting the

merriment at hand) with which clinicians have achieved certain medical

outcomes with patients in a certain epistemic equivalence class (patients

with certain medically relevant characteristics).37

Restricted Bayesianism is open to the objection that determining the

relevant equivalence class is often essentially ad hoc. (This is known

as “the problem of the reference class” in the literature on probabilistic

inference (Hájek 2003).) This objection is well-founded, although there is

some disagreement on this point in the literature; moreover, even those

who agree with the objection are often able to agree that a particular

37. Consider, for example, a doctor who wants to know the probability that a patient who
has a positive test result actually has the disease that the test tests for. (This probability is
usually much less than one, and indeed often less than ½, so a patient with a positive test
result is often most likely not to have the disease. The low typical value of this probability
causes many misunderstandings of test results, but these need not concern us here.) Let
a be the event of having the disease and b be the event of receiving a positive test result.
The quantity p (b|a) is a property of the test, and is provided by the company which markets
the test kit; it is usually approximately independent of the characteristics of the individual
patient, and can therefore be established once and for all. The prior, p (a), is harder to come by
but nevertheless is usually claimed to be objective: it can be calculated (according to clinical
epidemiologists) by finding out what proportion of the population of the geographical area
in which the patient lives has the disease. This information is often readily available. p (b)
can be calculated as a normalisation factor, as described above. It is then a simple matter to
use Bayes’s Theorem to calculate the required probability that the patient with a positive test
result has the disease, p (a|b). Were all of the uses of Bayes’s Theorem of this type, very few
of the objections to Bayesianism which I mention above would crop up.
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application of Restricted Bayesianism is no more ad hoc than any of its

rival theories would be in the same situation.

Restricted Bayesianism is also open to the objection from subjectivist

Bayesians that it only allows some epistemically relevant types of knowledge

to affect the prior probabilities, not all epistemically relevant types (some

of which may be subjective).

Despite these criticisms, Restricted Bayesianism has very few active

opponents. Surprisingly (in my view), it also has very few proponents: even

in areas in which its worth is undisputed it is rarely applied. It is because

it has been so rarely acknowledged that I have had to invent a name for

it. Its lack of generality reduces its philosophical interest somewhat, but

it ought to be of very great scientific interest indeed. A recent paper by

Daniel Goodman (2004) promoting this method presages such an interest,

I hope.

The main barrier to the use of Restricted Bayesianism in a wide class

of problems (apart from social inertia) is that the relevant equivalence class,

even when it exists and is objective, may not be large enough to provide

prior believable probabilities.

EMPIRICAL BAYESIANISM

Empirical Bayesian methods are radically different from other Objective

Bayesian methods; indeed, although they are Bayesian in the letter of the

law (at least according to my definition, although not according to the

definition of Deely and Lindley (1981)) they are very far from its epistemic

spirit. They “estimate” (a weasel word in this context) any probabilities

which are unknown — especially prior probabilities — from the very
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same observational data that are to be used for inference to hypotheses

(Breslow1990,Morris 1983, Lindley 1983). They are importantly different

from Restricted Bayesianism in that Restricted Bayesianism uses prior

probability distributions which are antecedently (or at least independently)

justified.

I have not been able to find any theoretical justification for Empirical

Bayesianism in the literature. According to standard Bayesian theory it is

clearly unjustifiable. All justifications of the use of Bayes’sTheorem assume

that the likelihood function which is used to update the prior distribution of

probabilities contains entirely new information. The numerical degree of

updating recommended by Bayes’s Theorem depends on this assumption.

Empirical Bayesianism violates the assumption by using the same data to

construct probabilities and to perform updating of probabilities. This is

similar in intent, and often similar in effect, to considering the very same

set of data twice as if it had been collected on two separate occasions.

Empirical Bayesianism, by using the same set of data to set the prior as

it uses to set the likelihood function, gives the data a demonstrably, and

quantifiably, larger role in the analysis than it should have according to

Bayes’s Theorem. It is quantifiably illicit double-dipping (Deely & Lindley

1981).

Empirical Bayesianism is also disreputable according to the Subjective

Bayesian school of thought for an additional reason, namely that, unlike

Subjective Bayesianism (and also unlike Jeffreys’s and Jaynes’s schools, and

unlike Pivotal Inference for that matter), it does not enable probabilities

which are not “estimated” from the data to be taken into account at all,

even when they are probabilities agreed by a whole community.
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Despite these immense philosophical drawbacks, the method is popu-

lar among scientists (see, for example, Bernardinelli & Montomoli 1992),

because it is extremely objective: not only does it not require any subjective

judgements of probability, it also does not require the use of Jeffreys/Jaynes

ignorance priors, to which I now turn.

CONJUGATE IGNORANCE PRIORS I: JEFFREYS

Another strand of Bayesianism is similar to Restricted Bayesianism in

using frequency information to construct a prior probability distribution

when such information is available, but otherwise uses a prior probability

distribution constructed using principles of symmetry of an abstract sort.

A theory of this type was historically the first type of Bayesianism, and

arguably the first statistical theory of any sort, to be given a reasonably

comprehensive treatment covering its philosophy, its mathematics and

some of its practicalities (Jeffreys 1931). So far, two theories of this type

have been developed, giving alternative views of the principles of symmetry

responsible for determining the prior: one is mainly due to Jeffreys and

one mainly due to Jaynes.

Both Jeffreys and Jaynes present their principles for constructing

prior distributions as ways of representing ignorance about H ; this way of

thinking about their theories makes it clear that they are compatible with

Restricted Bayesianism (compatible in the sense that the methods will

agree whenever frequency information suitable for constructing a prior

probability distribution is available and uncontentious). It is also, roughly

speaking, the traditional approach to statistical inference, discussed by

Bayes, Laplace and their followers in the 18th Century. Thus, for example,
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Jeffreys’s principle for a finite set of hypotheses is the same as Laplace’s,

namely to give each member of the set the same probability:

If there is no reason to believe one hypothesis rather than another,
the [prior] probabilities are equal.

(Jeffreys 1961, p. 33)

. . . and Jeffreys is explicit in saying that this is a way of representing

ignorance:

The rule that we should take them equal is not a statement of
any belief about the actual composition of the world, nor is it an
inference from previous experience; it is merely the formal way
of expressing ignorance.

(Jeffreys 1961, pp. 33–34)

However, as we will see below, the literature on Subjective Bayesianism

contains criticisms of the idea that we can be ignorant about a set of

hypotheses. Since Bayesianism is not my main topic, I will not attempt to

resolve this dispute.

Jeffreys’s theory assigns prior probability distributions to sets of

hypotheses either on the basis of objective (frequency) information relevant

toH or on the basis of conjugacy. Conjugacy is an algebraic concept which

guarantees that a Bayesian analysis will be mathematically neat, in the

following sense. A family of probability distributions P is conjugate to a

family of likelihood distributions L when it has the property that using

a member of P as the prior probability distribution guarantees that the

posterior distribution will have the same mathematical form as the prior.

(More precisely, P is conjugate to L iff when a prior distribution is in

P and a likelihood function is in L the Bayesian posterior distribution
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is guaranteed to be in P.) A general principle of Jeffreys’s theory is

that a prior probability function representing ignorance should be chosen

from a family of distributions conjugate to the likelihood function (more

precisely, conjugate to a reasonably narrow family containing the likelihood

function) whenever possible. Since this guarantees that the prior and

posterior will have a similar mathematical form, it has great practical

advantages, especially when the posterior distribution becomes the prior

distribution for a subsequent analysis (as it often does). Note, though,

that this is purely a mathematical criterion, and one whose only clear

advantage is simplicity of calculation. No philosophical justification for

choosing conjugate priors has been suggested, and most writers on this

principle— even its supporters— see it as ad hoc from the epistemological

point of view.

In order to construct conjugate priors for likelihood functions indexed

by θ ∈ Θ, we need to know what type of parameter θ is. “Type” here is

meant to distinguish primarily between location and scale parameters, as

follows.

In the simplest two-dimensional case, a location parameter is one

which we can vary to move a distribution left or right along the x-axis,

while a scale parameter is one which we can vary to compress or expand

a distribution towards or away from its centre. Typically the mean of a

distribution is a location parameter while its variance and standard devi-

ation are scale parameters. A formal and reasonably general definition of

parameter types is:

[L]et X and Θ be scalar random variables. If the conditional
distribution of X − Θ given Θ = θ is the same for all θ, then Θ
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is called a location parameter for X . If Θ > 0, and the conditional
distribution of X /Θ given Θ = θ is the same for all θ, then Θ is
called a scale parameter for X .

. . . Now, let X be a vector, and let Θ be a scalar. Let 1
denote the vector of the same length as X with every coordinate
equal to 1. ThenΘ is a location parameter for X if the conditional
distribution of X − Θ1 given Θ = θ is the same for all θ. If
Θ > 0 and the conditional distribution of X / Θ given Θ = θ is
the same for all θ, then Θ is a scale parameter for X .

. . . Next, let X be a vector, and letΘ be a vector of the same
dimension. ThenΘ is a location parameter forX if the conditional
distribution of X − Θ given Θ = θ is the same for all θ. If Θ
is a nonsingular matrix parameter [i.e., if Θ−1 exists] and the
conditional distribution ofΘ−1X givenΘ = θ is the same for all
θ, then Θ is a scale parameter for X .

(Schervish 1995, p. 345)

A more intuitive and equally general (although less precise) definition is

as follows. θ is a location parameter iff the likelihood p(x|θ) depends on θ

only via θ−x: an example is the mean of a Normal distribution. θ is a scale

parameter iff pθ(x) depends on θ only via θ / x: an example is the variance

of a Normal distribution. For Bayesian analysis (which we are considering

here), these conditions need only hold at the value x = xa.

Not all parameters are either location or scale parameters; further

definitions can be made without limit to take account of other possibilities

for the algebraic role of θ.

Given a classification of parameters, Jeffreys’s rules for priors repre-

senting ignorance are as follows. I state these without discussion because

I have no intention of either criticising or defending them; my comments
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about Jeffrey’s theory rest on more general considerations than whether

his rules for priors are plausible when taken individually.

• If Θ is finite, we have the obvious (although not obviously right!)

Laplacian principle of indifference: each of the ‖Θ‖ possibilities is

assigned an equal probability, so p(θ) = 1
‖Θ‖ , where ‖Θ‖ is the size of

the set Θ.

• If θ is a location parameter, or a scale parameter which runs from

−∞ to ∞, then p(θ) = k, for any constant k. (The choice of k does

not matter, as it cancels out when the posterior distribution is derived

using the Bayesian machinery described above.) This is an improper

prior: it does not integrate to 1.

• If θ is a scale parameter which runs from 0 to∞ then p(θ) = 1
θ (not

to be confused with 1
‖Θ‖ ).

. . . and so on. The classification of θ into location parameters, scale

parameters and so on is necessarily incomplete, and hence so is Jeffreys’s

theory. In itself I cannot see this as a criticism: I know of no argument

to the effect that our theory of statistical inference can be complete, apart

from specific suggestions that it should be this complete theory or that

complete theory, none of which is without its drawbacks.

A more important criticism of Jeffreys’s theory is that it is ad hoc.

This criticism is often made, and rightly so. In many parts of Jeffreys’s

theory his justifications for his choices of priors are subtle, complicated

and easily missed; so the ad hocness charge is not always easy to make

stick. But in other places the ad hocness charge is clearly right. This is

illustrated nicely by the following exchange between Jeffreys and Haldane.

For Θ = (0, 1), Haldane suggests the alternative prior
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p(θ) ∝ 1
θ(1− θ)

.

Jeffreys’s response is to dismiss this as giving “too much weight to the

extremes of Θ”; but he has no principled discussion of what “too much

weight” might be (in contrast to the care he takes over those parts of his

theory which he himself considers to have philosophical importance). In

short, Jeffreys as good as admits the charge of ad hocness. This point is

ad hominem, but that is the way with charges of ad hocness: the burden of

proof absolutely has to be on the defenders of a putatively ad hoc theory, not

on its attackers. Since I can neither find in the literature nor see for myself

a principled defence of the whole of Jeffreys’s theory of ignorance priors, I

conclude that it is ad hoc. (And so is Haldane’s suggested replacement.)

There is another component of objectivity in Jeffreys’s work (as com-

pared to the Subjective Bayesian schools), emphasised especially in his

(1973): this is that we should order hypotheses according to their simplic-

ity, which in turn can be measured by the number of parameters needed to

state the theory. (Strictly speaking, it is only the number of “adjustable”

parameters which is taken to be relevant: an adjustable parameter is one

which analysis may attempt to estimate, as opposed to one which is known

for sure.) Howson and Urbach rightly object to this, pointing out that

Newton’s theory, for example, has very few adjustable parameters as usu-

ally written “[b]ut as applied, say, in the kinetic theory of gases, it contains

of the order of 1023 undetermined parameters, and when further degrees of

freedom are added, the number rises correspondingly” (Howson & Urbach

1993, p. 418). In any case, merely ordering hypotheses is not enough to

give us an objective theory of statistical inference: the claim to objectivity
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of Jeffreys’s theory rests on its ignorance priors, which are not just or-

dered but fully specified. (This is very clear from Jeffreys’s (1961,1973),

and is admitted even by his strongest supporters (Jeffreys & Berger 1991).)

But in the work of Jaynes, to which I now turn, considerations related to

simplicity provide not only an ordering of hypotheses but also actual prior

distributions.

CONJUGATE IGNORANCE PRIORS II: JAYNES

Jaynes has written about the genesis of his theory in a way which also

serves nicely to introduce the content of the theory:

In 1965 it occurred to me that one very reasonable interpreta-
tion of ‘complete ignorance’ was group invariance. . . . I found
immediately a much deeper understanding of the Jeffreys prior
. . . in the location-scale parameter problem. This rule had been
rejected [by me] because Jeffreys’ argument in favor of it seemed
ad hoc and arbitrary. But now it was clear that the point was not
merely that σ was positive, the rationale that Jeffreys had given
[sic: in fact, Jeffreys gave more rationale than that, albeit perhaps
still not enough]. The point was that σ was a scale parameter,
complete ignorance of which meant invariance under the group
of scale changes. I immediately became an advocate, rather than
a critic, of the Jeffreys rule . . . with the sanction of a clear rational
justification.

This work, which was for me a major advance in thinking
[and which has subsequently become a widely studied theory]
suffered the standard fate. It was submitted to a well-known
statistical journal in 1966, and was indignantly rejected. The
editor (whom I had thought to be a Bayesian) took the trouble to
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write me a letter requesting that I never again send him anything
like it.

(Jaynes 1983, p. 115)

Unlike Jeffreys’s principles for choosing conjugate priors, Jaynes’s principle

of group invariance has an epistemological basis. One starts by “finding

the group of transformations on the parameter space which convert the

problem into an equivalent one” (Jaynes 1968, p. 227, reprinted as Jaynes

1983, p. 116), where by “equivalent” Jaynes means epistemically equivalent.

Jaynes does not give a complete characterisation of the ways in which

we might decide that a transformation of a problem leaves it equivalent;

he argues merely by paradigm examples. Possibly he is only able to

get away with this because the notions of location parameter and scale

parameter (defined above) cover the vast majority of the uses of statistical

inference; and so examples which seem to cover those cases adequately have

been found convincing, despite the obvious lack of a full justification for

Jaynes’s theory. In the case of location parameters, Jaynes argues that the

appropriate group of transformations is the infinite group formed by the

real numbers under addition, (R, +), which transforms the variable x into

x+a for any fixed a, without affecting the results of the analysis. Similarly,

in the case of scale parameters, the appropriate group of transformations

is said to be (R,×), which transforms the variable x into bx for any fixed b.

These groups of transformations serve as a way of tightening up

Jaynes’s older principle of maximum entropy, which says that “the prior

probability assignment should be the one with the maximum entropy con-

sistent with the prior knowledge” (Jaynes 1968, p. 229), where by “entropy”
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is meant the following generalisation of Shannon entropy (Jaynes 1968,

p. 235):

H = −
∫
p(x) log [p(x) / m(x)] dx

The function m(x) is generally underdetermined; Jaynes’s group-theoretic

considerations or some such are needed to fix m(x). When m(x) is fixed as

recommended by Jaynes, Jeffreys’s theory is recovered, with some minor

exceptions which, from the point of view of Jaynes’s theory, can be counted

as mistakes on Jeffreys’s part. Unlike Jeffreys’s theory, though, Jaynes’s

gives us some idea of how to extend the theory beyond the classifica-

tion of parameters so far produced: the extension will depend on finding

transformation groups which leave the problem epistemically equivalent.

Jaynes’s theory is remarkably complete, attractively simple and rel-

atively objective, but it has its problems. One is that some of his (and

Jeffreys’s) “prior probability distributions” are not strictly speaking prob-

ability distributions at all: they do not integrate to 1, as a probability

distribution must. This presents no immediate mathematical problem: the

posterior distribution is guaranteed to be a proper probability distribution

on Jaynes’s theory, so all the inferences about hypotheses drawn from his

theory are straightforwardly probabilistic. However, Stone and others

have proved that any theory which uses Bayes’s Theorem with improper

priors (priors not integrating to 1) can be fed examples which lead them

into strict, logical internal inconsistency (Stone 1976). This inconsistency

is decision-theoretically acceptable because it cannot be used to ensure a

sure loss in a betting scenario (see Hill’s comments in Berger & Wolpert

1988, pp. 167–171); nevertheless, from the philosophical point of view any
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inconsistency is a high price to pay. Some Jaynesians hope that this in-

consistency can be eliminated by finding some way of approximating the

improper prior distribution by proper prior distributions (much as the in-

consistencies in Greek calculus were eliminated by Weierstrass’s method

of taking limits).

A common criticism of Jeffreys’s and Jaynes’s use of priors represent-

ing ignorance is that there is no such thing as a probabilistic representation

of ignorance. For example:

it [is not] a tenable claim that the distribution which maximises
entropy is “the one which is maximally noncomittal with regard
to missing information” (Jaynes, 1957, p. 623). Any distribution,
in our opinion, is as informative as any other insofar as it supplies
a definite probability to every Borel set.

(Howson & Urbach 1993, p. 417)

The Borel sets are just the mathematically well-behaved subsets of X ; so

Howson and Urbach are saying that every prior which has no holes in it

is equally informative. Indeed, both subjective and ignorance priors seem

similar in terms of first-order properties such as assigning probabilities

to the same sets of possible data. But it is second-order (and higher)

properties which tell us (if anything does) how well a prior represents

ignorance: in particular, Jaynes’s claim is that a particular measure of the

spread of a distribution (namely its entropy) measures the extent to which

it represents ignorance. Howson and Urbach ignore such second-order

properties in their criticism of Jaynes.

Jaynes concedes that hismethod does not represent complete ignorance,

but claims that to reject his method on these grounds “would be just as
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absurd as to reject Euclidean geometry on the grounds that a physical

point does not exist” (Jaynes 1968, p. 236). This may be right, but it is

hardly a full defence. Euclidean geometry has been defended, for most of

its history, only as an axiomatic system based on agreement about Euclid’s

axioms; whether a physical point exists is irrelevant to such a defence.

In contrast, the properties of ignorance (ignorance itself, not a formalist’s

primitive concept such as a Euclidean point) are essential to the justification

of Jaynes’s method. On the other hand, modern defences of Euclidean

geometry often do depend on the properties of physical space, so Jaynes’s

theory is in a similar position to these modern theories of geometry. But

such theories fail to defend the truth (simpliciter) of Euclid’s theory! And

this is so not only because physical space is not, in fact, Euclidean, but also

because in order to adequately represent physical space Euclid’s theory

would have to be dramatically recast in a more synthetic mould, giving

physical justifications for its axioms. Similarly, Jaynes’s theory requires

either a defence of the existence of complete ignorance or a substantial

argument showing that partial ignorance is necessarily best represented

in the way he suggests. Such an argument does not yet exist. As with

Jeffreys’s theory, my criticism does not show that it is flawed; only that it

is (as yet) insufficiently justified.

ROBUST BAYESIANISM

Robust Bayesianism is a type of Bayesianism which is based on Subjective

Bayesianism, both philosophically and mathematically, but which avoids

drawing subjective conclusions by using the fact that conclusions about

hypotheses can sometimes be drawn without assuming that any particular
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subjective prior is correct (Edwards et al. 1963). Instead, one finds con-

clusions which come out true on any reasonable prior, where “reasonable”

is operationalised in terms of constraints which are either objective or (at

least) uncontentious. The conclusions are often phrased as if they were

approximations, but when that is the case they are precisely delineated ap-

proximations: a Robust Bayesian analyst will typically say, “my posterior

distribution is such-and-such; and for any prior in the precise class so-and-

so the posterior distribution differs frommine by at most the function f (θ),

where f is defined by the equation such-and-such”.38

From an epistemological point of view, Robust Bayesianism is similar

to supervaluation — the theory that a sentence containing a vague term is

true iff all reasonable precisifications of the vague term make the sentence

true. The idea is more plausible as a theory of statistical inference than

as a general theory of truth. As a general theory of truth, it leads to

counter-intuitive truth-values. For example, a typical supervaluationist

has to admit that the sentence “My height is vague” is false (where “my

height” is a vague term) because, under each possible precisification of my

height, my height is precise. This problem essentially depends on the

second-order nature of the sentence: only sentences that both use and

mention vague terms fall into the trap. This situation can arise in Robust

38. For example, the Robust Bayesians William O. Jeffreys (not to be confused with either
Harold Jeffreys or Richard Jeffrey) and James O. Berger (not to be confused with the Roger
Berger of (Casella & Berger 2002)) show that Einstein’s theory of General Relativity is more
probable than a certain Newtonian theory (remember that hypotheses in this thesis must be
simple hypotheses, so we cannot use a vague term such as “Newtonian theory” simpliciter)
under the constraint that the prior for the epihelion of Mercury is symmetric with a peak
at the observed value, and monotonic (constant or decreasing) on either side of that value
(Jeffreys & Berger 1991). It could be argued that the objectivity of that constraint can be
established by considerations about the mechanismwhich was used to measure the perihelion.
(Such an argument would have to be long and detailed. I do not claim that it is obviously
right, only that it is not obviously wrong.) Jeffreys and Berger’s argument allows for priors
of any degree of vagueness.
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Bayesianism, since one could be evaluating a set of hypotheses about one’s

own prior probability distribution; but it is not of the nature of a typical

scientific problem, so the problem is not widespread (and, to the best of

my knowledge, has not even been noticed before). There are sophisticated

versions of supervaluationwhich are not subject to this problem, andwhich

could perhaps be used to create a more complicated version of Robust

Bayesianism which could handle hypotheses about priors.

A muchmore obvious and widespread problemwith Robust Bayesian-

ism is that it is not objective unless the constraints are objective and—even

worse — there is no general theory showing that such constraints always

exist, even subjectively. However, the progress of Robust Bayesianism is

exciting to watch, both because large classes of problems can be shown

to have such constraints (sometimes objective constraints, sometimes just

very plausible subjective constraints) and because these classes of problems

might , for all we know to date, be able to be extended without limit.

Mayo (1996, pp. 359–360) uses the term “robust Bayesianism” to de-

scribemethodswhich use Bayesianmathematics but assess their procedures

in terms of Frequentist error rates. I have not seen this use of the term

elsewhere; it is certainly not standard in the Bayesian literature. Mayo

rightly classifies such procedures as Frequentist.39

OBJECTIVE SUBJECTIVE BAYESIANISM

All types of Objective Bayesianism have the same mathematical form as

Subjective Bayesianism, and this allows any Objective Bayesian method

to be easily converted into a Subjective Bayesian method when epistemic

39. In Grossman et al. (1994) my colleagues and I describe a method of this sort, calling
it a “unified” method because the same mathematics can be given either a Frequentist or (by
ignoring the error rates) a Bayesian interpretation.
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circumstances permit. This happens when the prior probability distribu-

tion calculated by an Objective Bayesian method is the same as the prior

probability distribution assigned by a subjectivist investigator.40 So to-

ken Subjective Bayesianism need not be in conflict with token Objective

Bayesianism.

For example, Breslow (1990) has argued that Empirical Bayesian

techniques are acceptable only in cases in which subjectivist Bayesian tech-

niques would have given the same answers (to a high degree of approxima-

tion). There are such cases, despite theway inwhichEmpirical Bayesianism

uses the same data twice, because it is possible — and in fact fairly likely

in typical scientific situations — that the prior produced by illicit Empir-

ical Bayesian methods is roughly the same as would have been produced

by subjectivist methods: in other words, Empirical Bayesianism, using

purportedly objectivist means, often happens to duplicate the subjective

degrees of belief of the scientists involved. (This is especially likely when

the amount of data is large; and in any case the error caused by double-

dipping on the data tends to zero as the amount of data tends to infinity.)

In that special case, the fact that the same set of data is used to calculate

the likelihood function is not a problem, at least for the subjectivist, who a

fortiori believes that the two techniques, Subjective Bayesianism and Em-

pirical Bayesianism, in giving the same answers, must be giving the right

answers.

40. Both schools of Bayesian thought are concerned with mathematical simplicity to a
certain extent when they formulate prior probability distributions, and because of this it
happens reasonably often that practitioners of the two schools of thought can agree exactly
on a prior distribution. When this happens, all their conclusions must be identical; even their
interpretations of their conclusions are if not the same then at least easily translatable into
each other.
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Perhaps this point is not as philosophically interesting as the conflict

between Subjective Bayesianism and Objective Bayesianism which remains

in principle no matter how often they agree in practice. The existence of

this conflict is sometimes denied by those Subjective Bayesians who see the

objectivity of the priors in Objective Bayesianism as completely illusory:

No prior probability or probability-density distribution expresses merely
the available factual data; it inevitably expresses some sort of opinion
about the possibilities consistent with the data.

(Howson & Urbach 1993; italics in the original)

So Howson and Urbach consider Jaynes’s system to be no more objective

than Subjective Bayesianism. But this is missing a point (albeit a small

one). Certainly Jaynes’s system “expresses” (so to speak) a limited set of

possibilities consistent with the data, as do all the systems here and as

must any system falling within the framework I set out in chapter 2. To

this extent it is just as badly off as any other system. But Jaynes’s claim

is that it expresses ignorance objectively given the constraints of being

a system of statistical inference suitable for doxastic agents. As I noted

above, this claim remains less than fully justified, but it may yet be shown

to be justifiable. If it is justifiable then there is a substantial difference

between Objective Bayesianism and Subjective Bayesianism.
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— 4—
Survey II: Frequentism

In this chapter I survey Frequentist theories of statistical inference. (See

chapter 3 for an introduction to this survey as awhole.) Here Iwill expound

Frequentist theories as they are expounded by their proponents; and I will

raise some issues which, prima facie, make the interpretation of the results

of Frequentist analyses difficult. In particular, I will discuss the general

impossibility of interpreting Frequentist probabilities epistemically (i.e., as

directly relevant to what a rational doxastic agent ought to conclude).

I have chosen to separate the uncontentious aspects of Frequentism

(this chapter) from the contentious aspects (chapter 7). All of the issues

raised in this chapter are universally acknowledged aspects of Frequentist

reasoning. None of them is seen as an objection to Frequentism by pro-

ponents of Frequentism, and I will argue that as far as I take the issues

in this chapter they are right not to see them as objections: they are, for

the moment, merely peculiarities. But in chapter 7 I will develop these

issues further and show that, after all, they entail fundamental problems

with Frequentism.

1. DEFINITION OF FREQUENTISM

The defining characteristic of Frequentist procedures is that they base all

their conclusions on functions averaged over the sample space X . The ra-
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tionale for this is the following principle, sometimes known in the literature

as the Repeated Sampling Principle:

A procedure for making inferences from data to hypotheses must
have good average properties on repeated application in similar
situations with different data.

The best way to think about what makes Frequentist methods of statistical

inference special is to think in terms of Table 1:

possible symptoms
vomiting diarrhoea social other symptoms

withdrawal & combinations
(observed (not observed (not observed (not observed
in this case) in this case) in this case) in this case)

hypotheses

dehydration 0. 03 0. 2 0. 5 0. 27

PTSD 0. 001 0. 01 0. 95 0. 029

anything else 0. 001 0. 001 0. 001 0. 997

Table 1

A Frequentist method of inference is one which requires at least one whole

row of the table. Thus, Frequentist methods are very different from

Bayesian methods and from all other methods compatible with the likeli-

hood principle, which only use the column in the table corresponding to the

actual observation. In other words, Frequentist methods fix a hypothesis
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and compare various hypothetical data sets under the assumption that that

hypothesis is true, as opposed to what the likelihood principle tells us to

do, namely to fix a data set and in some way compare hypotheses.

In the set of all possible methods of statistical inference complying

with the framework given in chapter 2, Frequentist methods are almost

the exact complement of methods compatible with the likelihood principle:

the likelihood principle forbids a method of inference to use values of X

other than xa, while Frequentist methods must use values of X other than

xa.

I say that Frequentist methods are almost the exact complement of

the methods compatible with the likelihood principle. It is possible for

a method to be incompatible with the likelihood principle without being

Frequentist. This is because amethodmight require values ofX other than

xa, thus contravening the likelihood principle, and yet might not require

a whole row of the table, thus making it not quite Frequentist. But as far

as I can see, and as far as the literature goes, there are no useful methods

of inference which fit into this chink: all the methods of inference you will

come across here or elsewhere are either Frequentist or factualist.

Although the above distinction is the one to keep in mind to see the

most important differences between Frequentist methods and others, it

needs to be fleshed out a bit before we can see how Frequentist methods

operate. I will first do the fleshing out in an abstract way, in the rest of

this section, and then in the rest of this chapter I will give definitions and

brief discussions of the most prominent Frequentist methods. In chapter

15 I will give concrete examples of how certain specific instances of these

Frequentist methods differ from alternative, Bayesian methods.
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A Frequentist method of inference (as I will use the term — see

chapter 2 for my reasons) first fixes:

(I) a reference class of real or hypothetical experiments to be presumed

similar to the experiment to be analysed,

(II) a set of hypotheses to be assumed false (the “error set”), and

(III) a mathematical form for the analysis, which varies from one Frequen-

tist method to another.41

Given these ingredients, Frequentist statistical inferences are made by

considering all possible equations of the chosen mathematical form (each

of which has exactly one vector-valued variable, representing a possible

observation) and choosing the one which minimises, subject to constraints

which may vary according to different Frequentist schools of thought, the

proportion of experiments in the reference class which cause hypotheses

in the error set to be inferred to be true. This minimisation picks out a

single equation; this equation is then applied to the actual observation, xa,

and the result is reported as the analysis of the actual experiment.

Frequentist methods are only applicable to experiments, not to mer-

riments in general. In order to apply Frequentist methods to a non-

experimental observational study, the study can be turned into an ex-

periment by adding fictional experimental structure. For example, the

accidental observation of a surprising supernova can be turned into an

experiment by imagining that it was obtained from a random sample of

observations of thewhole sky. This extra step required to use a Frequentist

41. In addition to varying between methods, there is some variation within each method, if
methods are grouped coarsely (counting, for example, Neyman-Pearson confidence intervals
as defined below as a single method). This latter variation comes from the fact that all
Frequentist methods use a “test statistic”, T(X), which is a real-valued function of the data
chosen at the discretion of the analyst. See below and chapter 7 for more on how T(X) is
chosen.
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method in a non-experimental situation is importantly arbitrary: different

ways of turning an actual observation into an imaginary experiment yield

different results. The supernova might be imagined to have been obtained

from a sample from different times instead of different places, or from a sam-

ple of galactic clusters instead of the sky as a whole, or . . . and each such

imagining gives different Frequentist analyses. Such methods of turning

observations into experiments are extremely controversial, but I will not

describe all the dimensions of the controversy here; I need only note that

they can only lead to an enormous decrease in clarity compared to meth-

ods which can analyse observational studies directly, treating any epistemic

ambiguities as part of the analysis rather than as a swept-under-the-carpet

prerequisite for the analysis (Good 1976).42

2. THE NEYMAN-PEARSON SCHOOL

By far the most influential philosophy of Frequentism has been Neyman’s,

developed in the late 1930s in competition to Fisher’s theories of maximum

likelihood (see chapter 5) and hypothesis testing (see below). Although

Neyman’s theory is old, its modern forms as used by hundreds of thousands

of researchers, as discussed by recent authorities such as (Barnett 1999)

and (Stuart et al. 1999), and as currently championed by philosophers

such as Mayo (1996) are, remarkably, unchanged from Neyman’s original

theory, except in a number of areas which I will discuss below (notably

the shift in emphasis from actions to inferences, and the amalgamation of

42. Such methods do exist: Subjective Bayesianism is one. But I will not pursue this line
of thought further here, because I do not have space to discuss such methods in detail, nor to
discuss how Frequentist methods might best avoid this problem by making the relationships
between non-experimental and experimental studies explicit.
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Neyman’s theory of hypothesis testing with Fisher’s theory of P-values,

defined below) and except in one areawhich is not relevant tomy discussion

(the decreasing popularity of frequentist theories of probability, largely in

favour of propensity theories of probability within a Frequentist statistical

framework).43

3. NEYMAN’S THEORY OF HYPOTHESIS TESTS

Neyman’s theory of hypothesis tests starts with a reference class. Every

observation from which an inference is to be drawn must be considered

as part of a reference class. (“Reference class” is modern terminology

for what Neyman himself called a “fundamental probability set”.) This

reference class may be constructed in one of only two ways: via random

samples or via “random experiments”.

REFERENCE CLASS 1: RANDOM SAMPLES

Firstly, the reference class may be a population from which the observation

is a random sample (originally, one of a number of samples of equal prob-

ability, but the equiprobability requirement is superfluous and was soon

relaxed in favour of known probabilities, not necessarily equal).

43. Neyman’s theory was expounded in his (1937), reprinted as (Neyman 1967). Neyman
and E. S. Pearson later jointly proved theorems which made it plausible that Neyman’s
theory could be applied in a wide variety of cases, and which helped to make the choice of
test statistics (T(x), as described below) within Neyman’s theory less ad hoc. Because of
these additions by Pearson, the theory is often called the Neyman-Pearson theory. Pearson’s
work was mathematically very important, but not philosophically. Therefore, when I am
discussing the theory in a way which does not rely on Pearson’s embellishments I will refer
to it as Neyman’s theory. When I am referring to essentially the same theory as interpreted
by authors who do not distinguish between the 1937 theory and other versions, I will refer to
it as the Neyman-Pearson theory. This distinction is only very rarely important: generally,
what is true in one is also true in the other.
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In Neyman’s theory, the reference class must be one which “cannot

be studied exhaustively” (Neyman 1967, p. 250). If it is “possible, though

it might involve great practical difficulty,” to study the population exhaus-

tively, then “any character of this population will be a constant” and hence

cannot be made the subject of statistical inference, at least not on Neyman’s

own version of the theory (Neyman 1967, p. 256). For example:

[C]onsider a specified population, say the population π1935 of
persons residing permanently in London during the year 1935
. . . . In the sense of the terms used here, there will be no
practical meaning in a question concerning the probability that
the average income, say I1935, of the individuals of this population
is, say, between £100 and £300. As the fundamental probability
set consists of only one element, namely I1935, the value of this
probability is zero or unity, and to ascertain it we must discover
for certain whether £100 ≤ I1935 < £300 or not. . . . Any
calculation showing that P{ £100 ≤ I1935 < £300 } has a
greater value than zero and smaller than unity must be either
wrong or based on some theory of probability other than the one
considered here.

(Neyman 1967, p. 256)

In other words, Neyman’s theory does not allow probability questions

to be asked of determinate propositions. Neyman used to cite Jeffreys’s

Bayesian theory (described in chapter 3) as an alternative which could be

used instead of his own in the determinate case. But his advice has not

been taken seriously; instead, later developers of Neyman’s theory have

made the theory universal. The constraint that the population from which

random samples are taken be one which cannot be studied exhaustively

has been abandoned, along with the restriction that one is not allowed to
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place a probability on the average income being between £100 and £300.

Perhaps confusingly, it is still accepted that the average income has a fixed

value, and it is normal to ask whether the interval [£100, £300] encloses

this value instead of whether the value is in the interval, thus emphasising

that the value cannot move. Sadly, I have to say that this is but lip service to

Neyman’s point. Nevertheless, all of the rest of Neyman’s constraints on

sampling theory have been kept, including those which Neyman himself

took to follow from the constraint which has now been abandoned; so

whether the abandonment of the constraint itself ought to count as a

major blow to the theory is rendered irrelevant, at least for my somewhat

ahistorical purposes.

REFERENCE CLASS 2: “RANDOM EXPERIMENTS”

Secondly, the reference class may be a (typically infinite, possibly imagi-

nary) series of experiments each of which gives results with certain known

probabilities, not necessarily equal. Such an experiment is called a “ran-

dom experiment”. The phrase “random experiment” is meaningless when

applied to an experiment in isolation. It assumes a meaning only when

applied to a series of experiments together with either a description of

what all the experiments have in common or, better, “a definition of the

measure appropriate to the fundamental probability set and its subsets”

(Neyman 1967, p. 254) — i.e., a description of the known probabilities for

each hypothesis and each possible outcome (together with an assurance

that they obey the probability calculus), just like the requirements laid out

in chapter 2 and illustrated in Table 1.
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The distinction between the two types of reference classes is clearly

“only superficial” (Neyman 1967, p. 252), since random samples are gener-

ated by random experiments; thus, random experiment reference classes

are the most general type and subsume population reference classes; so it

is unnecessary, from the philosophical point of view, to discuss sampling

specifically, as long as we adequately discuss random experiments.

PROBABILITIES FIXED ONCE AND FOR ALL

The series of experiments which makes up Neyman’s reference class, and

this series alone, gives the probabilities used throughout any ensuing Fre-

quentist inference. It does this by giving “a definition of the measure

appropriate to the fundamental probability set and its subsets” (Neyman

1967, p. 254), which is a table like Table 1 or an infinite version thereof.

This is why Neyman’s theory requires usually the whole table and at least

a whole row.

Crucially, the “known probabilities” are fixed by the model for the

whole analysis. This means, at least, that the probabilities given by a model

are fixed for a doxastic agent or community for the duration of an inferential

or decision-making episode. Neyman makes it very clear indeed that the

probabilities are fixed even after relevant data comes to hand, despite the

fact that the reference class is generally not homogeneous (uniform), and

that it often happens that an event falls into a part of the reference class

which is known to be special. Thus, if an event ε has a frequency of 1

in 4 in the reference class but it is discovered (for certain) that a single

experiment uses only a particular part of the reference class in which the
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event is known to have a frequency of 1 in 2, its probability does not become

½; it remains fixed at ¼.

It is not clear whether, according to the Neyman way of thinking,

these probabilities can ever be changed, even between analyses. Very few

authors address this question. In the writings of Neyman’s school, so

little is said about the option of changing these probabilities that one gets

the impression that to do so would be beyond the pale of Neymanism:

it would be not only to change the analysis but to change the method

of analysis. To change the underlying probabilities is clearly to change

reference classes; but the choice of reference class is essentially arbitrary

(as Neyman is happy to admit), so this consideration is inconclusive.44 In

any case, regardless of whether probabilities can ever change, it is clear

from the writings of Neyman and his followers, and from the practice

of Frequentist applied statistics, that probabilities cannot be changed in

typical situations in which new information comes to light.

FREQUENTIST PROBABILITY IS NOT EPISTEMIC

This fixity of probabilities in Neyman’s theory even when relevant infor-

mation comes to light is central to all of its inferential calculations, and

has not been relaxed in its descendants. It entails that probability is not

epistemic. An epistemic probability is one which represents the beliefs

of a rational doxastic agent. I do not have a clear analysis of epistemic

probability to offer; the idea suggests various ambiguities (e.g., perhaps

44. The only solution to this problem I am aware of is due to Seidenfeld (1979, p. 36): “the
probabilities must not become altered because of knowledge available about some specific trial,
e.g. the next one, which is not true of all trials in the repeated trial sequence.” Presumably
this is meant to imply that one may change the probabilities when information comes to hand
which applies to all trials in the sequence. I do not think that Seidenfeld’s solution is widely
accepted; and, in any case, the condition he mentions is only rarely met, so his solution is not
sufficiently general to yield a new theory of statistical inference.
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the beliefs of an idealised agent, in some sense) which I do not have an

opinion about. But no matter how we resolve such ambiguities, Neyman’s

theory cannot be epistemic, as I will now show.

In Neyman’s theory it is possible for an event to have a low probability

even if an agent employing the theory rationally expects the event to

happen. I will show this using an example taken from the game of bridge.

(Readers who do not care about the details may skip the footnotes to the

rest of this paragraph.) Consider a bridge player who is asked, prior to a

deal, the probability that he can defeat a contract.45 Bridge players will

quickly recognise that this probability is greater than the probability that

the player’s partner has the King of Spades.46 The player might choose

the obvious reference class (namely, all four players’ hands), according to

which the probability of his partner being the one of the four players to

have the King of Spades is ¼. He might calculate error rates, including

a P-value or a confidence interval as defined below, for the hypothesis

that his partner has the King of Spades using this reference class, and

he might promise to apply these error rates in his future decisions about

the hand of cards, secure in the knowledge that he has a guaranteed low

rate of error. Now suppose that the player’s left-hand opponent does bid

Seven Spades, after which the dummy’s hand is made public.47 Suppose,

45. Let us say that the contract is Seven Spades bid by his left-hand opponent, where the
opponent claims to be able towin all the trickswith Spades as trumps, given that our proponent
knows that the opposing bidder has the Ace of Spades but with no other information.

46. I apologise to those to whom examples drawn from bridge are gobbledegook. For those
to whom the terminology of bridge brings happy memories but whose grasp of the inferential
structure of bridge needs refreshing: our protagonist’s partner having the King of Spades
would render the opponents unable to win at least one of the tricks. If our player has the
King himself, it will probably fall under the Ace, but if his partner has it it will probably win
a trick, thus defeating the contract.

47. Now the player can see whether either he himself or the dummy has the King of Spades.
Neither does, so his partner or the other opponent must have it.
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moreover, that his partner’s bidding indicates that he has a strong hand,

most likely with some strength in Spades.48 Now he expects his partner

to have the King of Spades, and it is rational, in anybody’s book, for him

to act according to a probability of at least ½ that his partner has the

King of Spades. Anybody, even a Frequentist statistician, would agree that

the epistemic probability has increased as information has come to hand.

But on Neyman’s definition the probability has not changed, because the

reference class has not changed. I can be sure that the reference class has

not changed for two reasons. Firstly, the reference class never changes

during an analysis, according to Neyman himself, no matter how much

new information comes to light. Secondly, Frequentist statisticians do

not change their reference classes as new information comes to light, not

only because to do so would be to violate their (Neyman’s) theory but

also because they know that if they changed their error rates in this sort

of case they would no longer be able to quote guaranteed error rates for

their procedures. Now, a practising Frequentist statistician would ignore

Neyman’s definition for some purposes. He would be unlikely to say with a

straight face that the probability of his partner having the King of Spades

remained exactly ¼. But he would certainly (precisely by virtue of being a

Frequentist) stick to the error rates which he had calculated before the new

information came to light. In his calculations, even if not in his off-the-cuff

statements, he would be willing to give a low probability to an event which

he expects to happen.

My claim that practising Frequentists use Neyman’s definition of

probability (or, at worst, something operationally equivalent) can easily

48. He has bid Spades himself, perhaps.

116



be confirmed by looking at any applied science journal: P-values and

confidence intervals are calculated on the original reference class, and are

not updated when it becomes apparent that a variable has a value which is

unlikely according to the reference class. In other words, the probabilities

which a practising Frequentist statistician uses in his statistical analyses

do not change as new information comes to light.

I have established that a Frequentist can give a low probability to

something which he expects to happen (e.g. for the bridge partner to play

the King of Spades). This would entail an internal contradiction if prob-

ability were epistemic, because it cannot be rational to expect something

and yet to give it a low probability. Hence, Neyman probability is not

epistemic.

Neyman clearly acknowledges that his notion of probability is non-

epistemic, and is happy for it to be so. This is perhaps confusing, perhaps

reasonable, according to one’s position on the metaphysics of probability,

but in either case it is certainly not self-contradictory. However, it is im-

mediately fatal to a certain conception of inference. A hypothesis under

consideration might state simply that the event ε occurs. Neyman’s the-

ory may give that hypothesis a low probability (¼), even though (in the

absence of other evidence apart from the fact that ε occurs in ½ of the

cases in a subclass to which, we may imagine, it happens to be known to

belong) we should think that the hypothesis is probably true. Hence, on

Neyman’s theory, probability can no longer have any close connection with

the credence due to a hypothesis. In this respect, Neyman’s theory, and

Fisher’s slightly earlier theory reviewed below, were decisive breaks with

most, although not all, earlier theories of statistical inference.
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Thewhole point of statistical inference is to “move from beliefs and/or

statements about observations to beliefs and/or statements about what

cognitive states and/or actions we ought to adopt in regard to hypotheses”

(to quote from chapter 1). In Bayesian theory, as in informal reasoning

about probability prior to themodern schools of thought, wework outwhat

to infer by calculating the probabilities of hypotheses. Since probability is

non-epistemic in Neyman’s theory, he cannot use probabilities directly to

model what we ought to do or think; so his inference procedures cannot

be as simple as calculating the probabilities of hypotheses.49 Since the

probabilities of hypotheses can no longer do this job in Neyman’s theory,

Neyman needs something else that can. The problem which this sets for

him is well known. Birnbaum, for example, in the paper in which he first

proves the likelihood principle, quotes Savage on this problem:

Rejecting both necessary and personalistic views of probability
[by which Savage means to encompass all epistemic views of
probability] left statisticians no choice but to . . . seek a concept
of evidence, and of reaction to evidence, different from that of the
primitive, or natural, concept that is tantamount to application
of Bayes’ theorem. Statistical theory has been dominated by the
problem thus created.

(Birnbaum 1962, p. 277, quoting Savage)

Savage’s point does not quite cover the subtleties of Neyman’s own position

in the 1930s since, as we have seen, he believed then that Bayesian infer-

ence had a role to play; but it does accurately cover the school of thought

49. In addition to this reasonwhyNeyman cannot rely on the probabilities of hypotheses for
inference, the discussion of the income of Londoners above shows that hypotheses generally
do not have probabilities in Neyman’s system; but we need not dwell on that issue because,
even if hypotheses did have probabilities, they would be non-epistemic probabilities and hence
not able to tell us directly what we should infer.
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which Neyman founded, intentionally or not. Neyman’s seminal (1937)

addressed itself to the problem of Frequentist inference alone, and thus

required a principle of evidence different from the probabilities of hypothe-

ses. Neyman’s solution to this problem is, of course, to make inferences

in the Frequentist way, by calculating error rates. The following sections

describe such methods.

NEYMAN-PEARSON HYPOTHESIS TESTING

A Neyman-Pearson hypothesis test is a function from a variety of pa-

rameters to a rejection region. The parameters of the test are:

• a hypothesis space, H ,

• a single, simple hypothesis, h0 ∈ H (the null hypothesis),

• a sample space, X ,

• a test statistic, T(xa), where xa is an actual observation and T is a

function which converts the observed value xa into a simplified form

(typically a single real number),

• a probability function defined on h0 alone, ph0 , and

• a desired probability (relative to ph0 ) of a type I error (defined below).

If the test falls into the rejection region then the null hypothesis is rejected.

If the test does not fall into the rejection region then the null hypothesis

in not rejected. Under no circumstances is the null hypothesis accepted:

the procedure is essentially falsificationist. At least, the purest form of

the Neyman-Pearson hypothesis test is essentially falsificationist. Not

surprisingly, another form has evolved in which the null hypothesis is

either accepted or rejected, according to the result of the test; and often
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the two forms are used interchangeably by members of the same research

group.

The resulting theory, according to Neyman, requires a mathematical

model whose relevance to the world is something which needs to be tested

empirically in specific cases, not something which can be assumed on

epistemic grounds, and the results of which— acceptance and rejection—

are actions, not epistemic outcomes. This helps him to avoid the problem of

non-epistemic probabilities noted above: if only actions are considered then

epistemology is not relevant (at least, not directly), so the counter-intuitive

consequences of using non-epistemic probabilities are unimportant (or so

it was argued). However, by the 1950s a variety of versions of the theory

had evolved which disagreed on these points. These versions were all

described interchangeably by the same small set of names (most notably:

“statistics”, “Neyman-Pearson statistics”, “hypothesis testing”), and there

remains quite some work to be done to differentiate the versions from each

other and to delineate the versions which became clearly epistemic from

those which remained (or at least attempted to remain) non-epistemic.

Fortunately, the topics treated in this thesis are neutral between these

alternatives . . . not because epistemology is unimportant, but because

all versions of the theory have epistemic consequences, as I will show

in chapter 7. So it will not be me who has to do the work of inventing

new terminology to distinguish between themutually incompatible stances

which modern versions of the Neyman-Pearson theory take on questions

of epistemology versus action.

Neyman-Pearson hypothesis tests are usually constructed to ensure

that if h0 is true then the probability of rejecting h0 is 5%. This probability
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is known as the size or probability of a type I error (or sometimes just type I

error) of the test. The meaning of “probability” at work in this statement

is Neyman’s meaning: the probability of a type I error cannot change,

even if in the process of making the test information comes to hand which

tells us that h0 is more or less than 5% likely to be true. As I mentioned

above, this is not an inconsistency in the theory: it is merely a particularly

anti-epistemic way of using the word “probability”. Whether this marks a

flaw in the theory in some sense weaker than inconsistency is something

which I will discuss in chapter 7.

The modern Neyman-Pearson theory requires the statistical ana-

lyst to have an alternative hypothesis in mind (possibly a composite one),

although Neyman himself did not always require this. The alternative

hypothesis may be simply H with h0 omitted
(
H \ {h0}

)
; or it may be a

hypothesis h1 introduced especially for the purposes of a single Neyman-

Pearson analysis. Here I take the former approach, for consistency with

the framework I set out in chapter 2 and for easier comparison with other

methods of inference.50

If H consists of only two simple hypotheses then the probability that

a Neyman-Pearson test will fail to reject h0 if h0 is false is known as the

probability of a type II error of the test. IfH has a more complicated structure

then the probability of a type II error is the maxiumum or supremum

(least upper bound) of the probability of type II error as hi varies, where

hi ∈ H (hi 6= h0). The power of the test is generally thought of as one minus

the probability of a type II error; and Neyman-Pearson theory holds that

50. If necessary, the latter approach can be accommodated within this framework by setting
H = h0 + h1. In the context of this thesis such a move is unproblematic, although I would
have to tell a longer story if I were trying to fully describe the pragmatics of constructing
hypothesis spaces.
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the size of a test is to traded off against its power. This is a substantive

requirement; it may not seem so if probability is treated as epistemic, but

remembering that Neyman’s probability is not epistemic makes it far from

trivial.

I said that the power of a test is thought of as oneminus the probability

of a type II error; but a little thought shows that the type II error cannot

be calculated from the ingredients available to the statistician, because the

type II error rate depends on the actual values of the unknown variables

or, in other words, the true h. (This problem does not arise for the type

I error, because the type I error is calculated on the assumption that h0

is true. That assumption tells us the values of the unknown variables.)

Frequentists sidestep this problem by defining the type II error — and

hence the power— in terms of an estimate of the unknown variables. There

is no principled Frequentist way to make this estimate: it is subjective in

exactly the same way that Subjective Bayesian priors are subjective.

4. NEYMAN-PEARSON CONFIDENCE INTERVALS

In addition to testing hypotheses, Neyman, like most statisticians, wished

to be able to estimate the value of a parameter. Being able to do one of

these two things does not necessarily mean being able to do the other,

because of the merely dichotomous nature of hypothesis testing: for ex-

ample, knowing that a hypothesis passes a dichotomous test does not tell

us whether it gives us a unique reasonable estimate of a parameter or one

of many reasonable estimates (or perhaps, on some theories, no reasonable

estimate at all). As we will see, in Neyman’s theory there is a close link be-

tween the calculation of some significance tests and the calculation of some
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confidence intervals, but that link is not a fundamental part of the theory;

and the link between hypothesis tests and confidence intervals is broken

in certain important cases, including the case of clinical trials described in

chapter 15. Consequently, I must describe Neyman’s confidence intervals

from scratch.

Like all theories of estimation but unlike his theory of hypothesis

testing, Neyman’s theory of confidence intervals depends on H being

indexed by a parameter θ. The definition of a Neyman-Pearson confidence

interval is:

If there exist functions of x, T↓and T ↑, both statistically inde-
pendent51 of θ, such that

(∀θ) p(T↓ (x) ≤ θ ≤ T ↑ (x)) = 1− α

then the interval [T↓ (xa),T ↑ (xa)] is a 1−α confidence interval
for θ.

(adapted from Kendall & Stuart 1967, volume II, p. 99)

(1− α) is then known as the coverage probability of the interval.

T↓and T ↑may be chosen in a variety of ways. In general, the choice

is ad hoc, but a number of additions to Neyman’s theory (mostly due jointly

to Neyman and Pearson) make it less so.

The primary criterion used to pick a Neyman-Pearson confidence

interval is to choose the “shortest” interval by choosing T↓ and T ↑ such

that

(∀[T↓,T↑])(∀θ′ 6= θ) ph0
(
θ′ ∈ [T↓ (x),T ↑ (x)]

)
≤ ph0 (θ′ ∈ [T↓ (x),T ↑ (x)])

51. A is statistically independent of B iff p (A&B) = p (A)p (B).
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where θ represents the unknown true value of the parameter(s) of H .

However, this primary criterion is not generally enough to pick out a

single confidence interval. For a start, there need not be a unique shortest

interval, so this supposed definition hides a degree of arbitrariness. And

even when there is a unique shortest interval according to the definition

above, the choice of interval is not invariant under change of variables —

i.e., the interval which is shortest for θ will not be the shortest for f (θ) for

arbitrary f , even when f is a bijection (a one-to-one correspondence).

There are various other criteria for choosing confidence intervals;

unfortunately, none of the others is guaranteed to apply either. There is

no principled theory which assigns priority to one criterion over another.

There is some consensus that choosing shortest intervals ismost important

(Stuart et al. 1999); beyond that, the next priority is usually to choose an

interval using a method which has a “probability of covering the true value

of the parameter . . . greater than the probability of covering any false

value, no matter what the true value be” (Seidenfeld 1979, p. 54) (where

“probability” has its non-epistemic sense, as usual in a Frequentist method).

The third priority is usually to insist on a form of mathematical invariance

(Seidenfeld 1979, p. 55) which falls short of complete invariance under

parameter transformations. (Most likelihood-based methods of inference,

in contrast, have complete invariance under parameter transformations:

for example, Bayesian inference using proper priors has this property.)

Now that we have used a probability statement involving a fixed

parameter for the first time, this is a good moment to revisit Neyman’s

stricture about such things. It may appear that the probability statement

used in the definition of shortest intervals contradicts Neyman’s insistence
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that fixed values such as θ′ cannot have probabilities; but in this case x is a

random variable (see chapter 2), and it is this which licenses probabilities.

If x were replaced by xa (an actual observation), the formula would no

longer have a meaning.

It is instructive to compare this case with the commonly-seen p
(
θ ∈

[T ↓(xa),T ↑ (xa)]
)
= 95% — “my confidence interval has a 95% chance

of containing the true value of its parameter” — in which there are no

random variables, and which Neyman would not permit. Statements of

that impermissible form are often seen in the scientific literature, even from

committed Neyman-Pearsonites, because the above distinction is often lost

even on the faithful.

An interesting objection to choosing the shortest confidence interval

has been raised by Howson and Urbach: that the only justification of con-

fidence intervals available within Neyman-Pearson theory — namely, the

usefulness of intervals with known coverage probabilities — is a justifica-

tion which gives equal validity to both long and short intervals (Howson

& Urbach 1993, p. 245) (and, indeed, to unions of disjoint intervals). In

considering this objection, it is important to realise that it is not some-

thing which can be overcome by a small adjustment to Neyman’s theory.

The objection follows from Neyman’s insistence on evaluating methods of

inference only according to their rate of errors on repeated applications of

a fixed rule. This restriction is fundamental to Neyman’s theory (by which

I mean that if other ways of evaluating inference methods were allowed

to have any force the theory would be totally different, both philosoph-

ically and practically). In terms of inference methods evaluated in this

restricted way, all confidence intervals complying with the above equation
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are equally correct, just as Howson and Urbach claim. Therefore the deci-

sion to choose the shortest is not a decision based on the principles of the

theory.

This objection is right; but it is not an objection to the validity of

the theory. Neyman’s theory claims that any confidence interval will do;

Neyman’s and Pearson’s extensions to the theory tell us to choose the

shortest interval; this choice is not justified by the theory, but that does

not make it wrong. On the other hand, it certainly makes the theory ad

hoc. I will return to this point in chapter 7.

Although Howson and Urbach’s argument does not invalidate Ney-

man’s theory, it does invalidate the almost universally held belief among

Frequentists that the shorter interval can be adequately justified by the

fact that it is more “accurate” or “precise” and therefore gives us better

information about θ than the longer interval does. Howson and Urbach

quote Mood giving this argument in 1950 (“in comparing two 95 per cent

confidence intervals, he stated that one of them was ‘inferior’ because of

its greater length, for ‘it gives less precise information about the location’

of the parameter.” (Howson & Urbach 1993, p. 245), quoting (Mood 1950,

p. 222)), and they could just as easily have quoted almost any statistics

textbook from 1940 up to now. The shorter interval is more precise, but

a longer interval is equally well justified by its Frequentist characteristics,

so it makes no sense to argue that the precision of the shorter interval

gives us better information about θ. Consider:

– Fred tells me that a standard London bus is exactly 16 metres long.

– Jenny tells me, more vaguely, that a standard London bus is some-

where between 10 and 30 metres long.
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– Fred and Jenny are equally reliable judges of length.

If I have to pick one of their two estimates, should I should pick Fred’s on

the grounds that it is more precise? Not necessarily. If I were planning

to jump a London bus on a motorcycle, I would be much better advised to

pick Jenny’s. There is no rule of rationality that says we should use the

most precise estimate when less precise estimates are equally well justified.

Another criterion for choosing a confidence interval from among the

infinite number of intervals with equal coverage probabilities is to make

sure that the centre of every confidence interval is a point estimate defined

using an estimator function with certain supposedly desirable properties

such as consistency and unbiasedness. The main purpose of this is to

narrow down the set of acceptable estimates in order to make the theory

less ad hoc, rather than to make the estimates themselves better justified.

Making the theory less ad hoc is important, because it reduces the scope

for an individual who wants to see a particular result to conduct an analysis

which favours his preferences; but there are many such ways of making the

theory less ad hoc, and none of them seems to be particularly central to the

theory. It is therefore not clear to me whether this requirement should be

seen as a central part of Neyman’s theory. Certainly neither Neyman nor

his successors defend it in the rigorous way in which they defend the parts

of the theory presented above. In any case, I will discuss these supposedly

desirable requirements, especially unbiasedness, in chapter 11.52

52. As a side issue, the choice of confidence intervals can be made less ad hoc if a utility
function is available (Wald 1947, Lindley 1990b, p. 46). Such a decision-theoretic situation
is outside the scope of this thesis, as explained in chapter 2. But it can be argued that when
a utility function is available Bayesian decision theory is more attractive than Frequentist
decision theory, and for this and other reasons (foremost ofwhich is probably the unwillingness
of the vast majority of Frequentists to countenance anything that smacks of subjectivity to
the extent that a utility function does) utility functions are very rarely used in Frequentist
inference.
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5. INFERENCE IN OTHER DIMENSIONS

The Frequentist theories which I have discussed above concern hypothesis

testing, which we might characterise as zero-dimensional inference, since

it results in either rejecting or failing to reject a point null hypothesis,

and confidence intervals, which we might characterise as two-dimensional

inference, since the result is a pair of real numbers. A part of the Neyman-

Pearson theory of inference which I have not presented here is the theory

of estimating a parameter by a single integer or real number, which we

might characterise as one-dimensional inference. I see no need to deal with

one-dimensional inference separately, for three reasons:

• because the single-number inference problem is treated by the litera-

ture as a less important problem than the zero- and two-dimensional

cases;53

• because the single-number inference problem is usually subsumed

into the theory of confidence intervals (since the best single-number

estimate of a parameter is usually considered to be the centre of a

confidence interval for that parameter); and

• because the single-number inference problem raises no philosophical

issues other than those which have already been raised by hypothesis

tests and confidence intervals.

What, though, about inferences resulting in measures of more than two

dimensions? Such things simply do not arise in the literature on the

foundations of Frequentist inference. They do very occasionally arise

53. The grounds for this, when grounds are given at all, are that a single-number estimate
ought always to be accompanied by a confidence interval lest we assign it too much weight
(Armitage & Berry 1994).
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in the Bayesian literature, in the decision theory literature, and in the

literature on the mathematics of probability, but none of those need trouble

us here, because the Bayesian theory on higher-dimensional inferences

is identical to the Bayesian theory of lower-dimensional inferences (both

philosophically and, in the most important respects, mathematically as

well), and hence has already been treated in chapter 3, while decision

theory and measure theory lie outside the scope of this thesis.

I know of no theoretical reasons why the literature on the foundations

of Frequentist inference should have ignored higher-dimensional inferer-

ences, but there are obvious practical reasons. For example, one might

wonder about the properties and usefulness of a confidence interval whose

bounds were pairs of real numbers (perhaps representing complex num-

bers) rather than single real numbers; but there would be little use for such

a thing in the traditional domains of inferential statistics, which are the

biological sciences very broadly construed (including agriculture). Conse-

quently, there is no standard theory of such things for me to present in this

survey chapter. Instead, I turn to alternatives to the Neyman-Pearson the-

ory which remain within the Frequentist canon. In the following sections

I will present three such theories: Fisher’s, Fraser’s (structural inference),

and a mishmash theory which has no name and yet is the most commonly

used of all.

6. FISHER’S FREQUENTIST THEORY

By far the most influential Frequentist theory which does not stem from

Neyman’s theory is Fisher’s. Fisher’s foundational work mostly predates

Neyman’s and, of course, influencedNeyman. Despite this, I have discussed
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Neyman’s programfirst becauseNeyman’s ismore important, both because

its philosophy is much more internally coherent than Fisher’s and because

modernFrequentism owesmuchmore toNeyman’s philosophy than it does

to Fisher’s; and so it is more important for us to be clear about Neyman

Frequentism than about Fisher Frequentism. (For a brave attempt to make

Fisher’s Frequentism coherent enough to rival Neyman’s, see Seidenfeld

1979.)

Fisher’s work is notoriously plagued by internal philosophical and

mathematical contradictions — contradictions which are sometimes at-

tributed to his attempts to overcome fundamental problems in all pre-

ceding theories of statistical inference and sometimes, less charitably, to

Fisher’s personal inability to admit to having been wrong (Savage 1976).

The details of Fisher’s Frequentist program are particularly tangled. His

proposal for Frequentist confidence intervals, in particular, were intimately

connected with his program for fiducial inference (described in chapter 5),

although some strands of his Frequentist program make sense without

assuming the prerequisites of fiducial inference (Seidenfeld 1979). In this

section, I will discuss the two completed parts of his Frequentist program:

his theory of significance tests and (very briefly) his theory of confidence

intervals. I will discuss the the non-Frequentist parts of his program,

maximum likelihood estimation and fiducial inference, in chapter 5. (It has

been argued that fiducial inference is Frequentist (Seidenfeld 1979), but

whether it is or not will make no difference to my appraisal of it.)

Fisher importantly disagreed with Neyman about the construction

and relevance of reference classes. Fisher believed that reference classes

could not be dependent on ancillary statistics (see the definition in chapter
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5), and he had amore epistemic notion of probability thanNeyman. Despite

this, Fisher agreed with Neyman’s insistence that a probability based on a

reference class could not be changed once an event was known to lie within

a smaller subclass, as described above. All Frequentists seem to be agreed

on this point.

Fisher’s signficance tests require the same ingredients as Neyman’s

except that they do not use H (except for h0). In other words, Fisher’s

significance tests do not require an alternative hypothesis. They do still

require a test statistic (which, recall, is a function, usually designated T ,

which simplifies members of the sample space X , usually converting them

to real numbers).

The basis of Fisher’s significance test is the set of hypothetical out-

comes

{T(x) ≥ T(xa)}

for a “one-sided” test and

{ |T(x)| ≥ |T(xa)| }

for a “two-sided” test. xa enters into the significance test only through

these sets.

How to make the choice between one-sided and two-sided tests is

controversial, and it has been argued that no principled choice is possible

(Salsburg 1989). I will not discuss this question here, since I will argue

in chapter 7 that any choice of significance test is ad hoc, regardless of

whether there is a principled means of choosing between one-sided and

two-sided tests.
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The significance level or P-value of the observed outcome, xa, is calcu-

lated as

P = ph0
(
T(x) ≥ T(xa)

)
or

P = ph0
(
|T(x)| ≥ |T(xa)|

)
for one-tailed and two-tailed tests respectively.

IfP< 5% (or some other fixed number) then the outcome is considered
statistically significant and h0 is rejected. According to Fisher, h0 should

also be rejected if P is close to 1, but this stipulation has not survived in
descendants of his theory.

Clearly, for every choice of H , h0, X and xa, statistical significance

occurs in less than 5% of repeated trials in some Neyman reference class.

This fact corresponds to the fact that every Fisher significance test is math-

ematically equivalent to a Neyman-Pearson hypothesis test (or rather to a

family of tests with fixed size but varying power depending on the alter-

native hypothesis chosen). Fisher’s methods are constructed in a way which

guarantees this property. However, Fisher insisted that his test should not

be given a Neyman-style justification. Fisher’s preferred justification was

the following:

The force with which such a conclusion [rejection of h0 on the
basis thatP is very low] is supported is logically that of the simple
disjunction: Either an exceptionally rare chance has occurred, or
the theory of random distribution is not true.

(Fisher 1973, p. 39, quoted in Edwards 1972, p. 177
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I will discuss this justification further in chapter 7. I count Fisher’s sig-

nificance tests as Frequentist, which means (in my terminology, at least)

that they must have a Frequentist justification. Fisher distanced himself

from the Neyman Frequentist justification, but the justification he offered

instead is still Frequentist: the reference to “an exceptionally rare chance”

(my emphasis) is an appeal to the frequency with which such a chance

will occur in a population of experiments yielding different data, which

is precisely what separates Frequentist from non-Frequentist methods of

inference. In otherwords, Fisher’smethods are not only constructed by fix-

ing a hypothesis but are also justified by fixing a hypothesis and comparing

various hypothetical data sets under the assumption that that hypothesis is

true, as opposed to fixing a data set and in someway comparing hypotheses.

Fisher also developed a theory of interval estimates, somewhat like

Neyman’s confidence intervals. Fisher’s theory agrees with Neyman’s nu-

merically in most cases (although not all). From all points of view —

philosophical, mathematical and practical — Fisher’s and Neyman’s theo-

ries of interval estimates have become merged, so that their descendants

cannot be cleanly distinguished from each other, while descendant theories

take their justification from Neyman’s epistemology (or lack of episte-

mology, as described above) or, very occasionally, from Fisher’s fiducial

argument (chapter 5).

7. STRUCTURAL INFERENCE

A relatively recent Frequentist development is the theory of structural

inference, which combines mathematical methods essentially the same as
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pivotal inference (described in chapter 5) with an orthodox Neyman phi-

losophy of inference (Fraser 1996, Fraser 1968). It has been criticised for

not being applicable to all cases (Barnett 1999, p. 318). Since it shares all

the epistemic features of Neyman’s theory we need not consider it in detail.

Mutatis mutandis, it is subject to all the objections to Neyman’s theory

which I will give in chapter 7.

8. THE POPULAR THEORY OF P-VALUES

Disagreements between Fisher and Neyman about reference classes and

probability were of no interest to the vast majority of the buying public.

In the late 1940s and early 1950s a plethora of textbooks was produced

to satisfy the postwar boom in applied statistical inference, and the most

popular of these books made mincemeat of the careful distinctions invented

by Neyman and Fisher (Gigerenzer 1993). The distinctions were not lost

from the more theoretical parts of the literature, of course, but in the

practically oriented textbooks a third Frequentist method was born, like

something fromMinoanmythology with the head of Neyman and the body

of Fisher.

This popular theory, which has no name as far as I can tell, can be

found in almost any elementary introduction to statistics from 1960 to the

present day. It uses Neyman’s theory of reference classes, the philosophy

of Fisher’s theory of P-values combined with the mathematics of Neyman’s

theory of hypothesis tests, and Neyman’s theory of confidence intervals.

Gigerenzer argues that this combination of theories is a misrepresentation

of both Fisher and Neyman (Gigerenzer 1993). Gillies (1973, pp. 206–215)

has shown that Neyman himself sometimes used a mishmash of his own
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and Fisher’s theories (although not the same mishmash as the popular one;

specifically, Neyman calculated P-values without an alternative hypothesis,

which is in accord with Fisher’s theory but contrary to his own). Fisher,

on the other hand, never settled on a clear account of his own preferred

methodology. So we need not feel too bad on Neyman’s or Fisher’s behalf.

Since the popular theory contains no new ingredients, it needs no

further description; but it needs to be mentioned because it is by far

the most used statistical theory of all time and the basis of almost all

contemporary experimental science.

In addition to the published popular theory, there is a mostly unpub-

lished popular folklore of statistics which uses epistemic terms to describe

Neyman’s non-epistemic probabilities. For example, “Oakes (1986, p. 82)

found that ‘96% of academic psychologists erroneously believed that the

level of significance specifies the probability that the hypothesis under

question is true or false.’ ” (Gigerenzer 1993, p. 330).
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— 5—
Survey III: Other Theories

In this chapter I survey the remaining theories of statistical inference.

(See chapter 3 for an introduction to this survey as a whole.) This chapter

is a mishmash. One of the theories covered here, the pure likelihood

theory, has a sound theoretical justification but is rather incomplete in

comparison with the major theories — Bayesianism and Frequentism —

presented in the previous two chapters. The other theories presented in

this chapter, apart from Shafer’s, are all speculative in the sense that they

have been invented without any discernable justification. They have, to

date, been examined by only a small number of theorists and, except for

the fiducial method, no serious effort has been made to give any of them

a philosophical basis. Possibly for this reason, or possibly coincidentally,

none of the methods which I label speculative has ever been in frequent use.

Moreover, there is no reason I can find to think that any of them, including

the fiducial method, has a philosophical basis. I mention them mainly for

the sake of being exhaustive. Consequently, I will deal with these theories

relatively briefly.

1. PURE LIKELIHOOD INFERENCE

The pure likelihood school of thought, the philosophical development of

which is due largely to Hacking, holds that one should operate with the

minimumof ingredients. In particular, this school holds that it is impossible
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to do statistical inferencewithout considering the likelihood function, (∀h ∈

H ) p(xa|h), but that one can do statistical inferencewhile considering pretty

much only the likelihood function. (Hacking himself does not present this

parsimony as an important desideratum of his theory. I do so because it

is what distinguishes it from the other methods presented in this survey.)

Methods of statistical inferencewhich attempt to rely only on the likelihood

function I call pure likelihood methods.

THE METHOD OF MAXIMUM LIKELIHOOD

By far the oldest pure likelihood method is the method of maximum

likelihood, also known as maximum likelihood estimation, which says

that we should accept (in some sense) the hypothesis h which maximises

p(x|h). The origin of the theory is lost in the mists of time; Neyman (1967,

p. 260) credits it to Karl Pearson, while Fisher (1930, p. 531) credits it to

Gauss.

Themethod ofmaximum likelihoodwas the historical precursor of the

likelihood principle. It is not the same as the likelihood principle (although

the two are sometimes confused), but it furnished the conceptual tools that

the likelihood principle uses.

Fisher (1921) gave the first clear statement of the method of maxi-

mum likelihood. The method starts by considering the likelihood function

p(xa|h) with xa fixed (at whatever was actually observed) and h variable.

The maximum likelihood method then estimates h by picking the value of h

which maximises p(xa|h). Fisher was to champion this method many times

over the next four decades, and gave many examples of its use, although he
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also advertised his other methods as superior to the method of maximum

likelihood for certain purposes.

The method of maximum likelihood has two major problems. The

first has been picked up by Hacking (1965) among others. The problem

is this. Suppose the likelihood function following an experiment has the

following shape:

Figure 3: p(xa|θ)

Then themethod ofmaximum likelihoodwill pick θ = 0 as the best estimate

of θ. In one sense this is the best estimate: it is where the likelihood function

attains its highest value. But in another, probably more important sense,

it is more reasonable to expect θ to be somewhere between 20 and 30. A

Bayesian analysis would express this by saying that (given a reasonably

flat prior probability distribution) the most important single value of θ is 0,

but the range of values of θ between 20 and 30 is, in toto, much more likely
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than θ = 0. The same sentiment is harder to express for a non-Bayesian,

but the fact remains, Bayesian or not, that the best estimate of θ may not

be 0; and yet that is the estimate that the method of maximum likelihood

would always recommend.

More specifically, if some hypothesis A is the most probable in the

face of the evidence but hypothesis B is more likely to be near the truth

(as might be the case if other reasonable hypotheses cluster around B but

not around A, as illustrated by the choice of A = 6 and B = 16 in Figure

3 above) then A is not necessarily a better hypothesis than B. As Hacking

puts a similar point,

Speaking very intuitively for a moment, an estimate is good if it is
very probable that the true value is near it. But an [sic] hypothesis
is not best supported [in Fisher’s sense] as it is probable or not
that the truth lies near the hypothesis. To take a crude but
instructive example, suppose there are six hypotheses about the
value of A, namely A = 0. 90 or 0. 12 or 0. 11 or 0. 10 or 0. 09
or 0. 08. Suppose that the last five are equally probable—in any
sense you care to give ‘probable’—and that the first is slightly
more probable. Then, if one may infer that the most probable
hypothesis is best supported, A = 0. 9 [sic] is best supported.
But it is much more probable that A is near to 0. 1, and so 0. 1
may be the best estimate [contrary to the method of maximum
likelihood. . . . This suffices] to establish a difference between
‘best-supported’ and ‘best-estimate’.

(Hacking 1965, p. 29).

This is not quite the same as my example, because Hacking uses proba-

bilities of hypotheses, p(h), where Figure 3 uses likelihoods, p(xa|h). But

the spirit of the example is the same, and so is the conclusion to be drawn:
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that the maximum of a probability distribution is not necessarily the best

estimate.54

Hacking’s own conclusion from this argument is that:

[t]he best-supported hypothesis [the maximum likelihood esti-
mate] is necessarily the most reasonable one, but that doesn’t
mean that one should behave as if it were true.

(Hacking 1965, p. 28)

In other words (but still his words), Hacking claims that 0.9 is “the most

probable value [of A] in the face of the evidence” and yet 0.11 is “more likely

to be near the truth” (Hacking 1965, p. 29) and hence is a better estimate

for many purposes.

This issue is very much clarified if we drop our quest for a single

number to summarise the likelihood function, and instead use the whole

likelihood function as our representation of what an observation tells us

about a set of hypotheses. Hacking does not seriously consider this option,

but Edwards (1972), following otherwise verymuch inHacking’s footsteps,

does consider it. I describe this option further under the method of support,

below.

Although graphs of the shape shown above are rare, essentially the

same problem can occur with many other likelihood functions. For ex-

ample, consider the old chestnut of estimating the maximum value of the

numbers representing bus routes in a town, given only the information that

one such route is numbered 75. Numbers lower than 75 have a likelihood

54. Hacking says only that the maximum likelihood estimate (0.9 in his example, 6 in mine)
may not be the best estimate. As he correctly adds later (p. 62), “whether or not an estimate
is good or bad may depend on the purpose to which it will be put”. But even this is enough
to establish that Fisher’s method of maximum likelihood is not always the best inference
procedure to follow.
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of zero of being the maximum, while on any reasonable model numbers

higher than 75 have progressively lower and lower likelihoods. (Two as-

sumptions which are adequate to demonstrate this are (i) that the likelihood

is monotonic and (ii) that no bus route is numbered 1,000,000,000 since

that number would not fit on a bus’s display panel.) It follows that the

maximum likelihood estimate of the maximum bus number is 75; and yet

that is not a good estimate, because we know for sure that it lies right at

the bottom of the range of reasonable estimates.

A second major problem is that unrestricted maximum likelihood

methods cannot be right, because they fail in the presence of a suitable evil

demon hypothesis. Let H contain the hypothesis hΞ that an evil demon

has magicked up my observation report from pure malice. Evil demons are

infallible, so the probability of the observation result, conditional on hΞ, is

1. Hence hΞ is the maximum likelihood estimate. (It may not be the unique

maximum likelihood estimate, but if the rest ofH is scientifically plausible

then it will be.) This is a reductio, because the method of maximum

likelihood estimation is meant to determine which hypothesis we should

infer the truth of, or act according to, or some such, and yet we do not

want to take evil demons seriously. The problem is very easily solved, but

the only obvious solution — namely, to disallow implausible hypotheses

— is not only ad hoc but also subjective in precisely the sense in which

Subjective Bayesianism is subjective. Indeed, the most obvious solution to

the evil demon problem is to weight the members of H according to their

plausibility — in other words, to adopt Subjective Bayesianism.

A third problem with the method of maximum likelihood is that it

ignores information which is available but not presented as part of X ,
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xa or H . This is also true of every other method in this survey except

for Bayesianism and pivotal inference, and creates problems in every case,

but the problems are particularly noticeable in the method of maximum

likelihood because only this method tells us unambiguously to prefer a

single hypothesis over all others. The problem is best illustrated by this

example:

If maximum likelihood is the only criterion the inference from
the throw of a head would be that the coin is two-headed.

(Jeffreys 1961, p. 383, citing Wilson 1952)

Any method of inference which counsels us to ignore information which

is not presented as part of X , xa or H will run into related problems;

and all methods except for Bayesianism, pivotal inference and Shafer belief

functions are of this type. I will illustrate this point further using the (more

complicated) problems of Frequentist methods in chapter 7.

The method of maximum likelihood, as I have presented it here, is

compatible with the likelihood principle. However, it is often used in

conjunction with Frequentist methods which are not compatible with the

likelihood principle. For example, Frequentist methods are often used to

“understand and evaluate the precision of the maximum likelihood esti-

mate” by seeing how it varies in hypothetical repetitions of an experiment

(Basu 1975, p. 23). Such combinations of methods are occasionally referred

to as “maximum likelihood estimation” in the literature (but not in this

thesis).
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THE METHOD OF SUPPORT

Themethod of support was first developed, as part of Bayesian statistics,

by Jeffreys and Good, and was made into an independent school of statis-

tical inference by Hacking (Hacking 1965), with notable refinements by

Edwards (1972) and Royall (1997, 2004). It has been linked to fundamental

issues in physics by Hilgevoord and Uffink (1991). I give Hilgevoord and

Uffink’s characterisation here as it is accurate and succinct and uses the

same terminology as my chapter 2.

The basic principles [of the method of support] are:
a. All the information provided by the data x about the value
of θ is contained in the [likelihood] function

Lx(θ) ≡ pθ(x)

b. [Any strictly monotonic function of t]he ratioLx(θ0)/Lx(θ1)
can be interpreted as a degree of relative support, in the
sense that the data provide stronger support for θ0 than for
θ1 if, and in so far as, this ratio exceeds unity.

(Hilgevoord & Uffink 1991)

Principle b is a version of the law of likelihood. I discuss this principle

further in chapter 8, where I show how it differs from the likelihood

principle.

The method of support is a type of confirmation theory: that is, it is a

theory about the extent to which the observation x supports the members

of H , not a theory about which members of H are most likely to be true

after we have observed x. The latter may depend on what we thought

about h before we observed x while the former, at least according to the

method of support, does not. As Hacking explains this dichotomy:
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There are two quite distinct questions:
(1) Which hypothesis about the true value is best supported by

current data?
(2) In the light of the data, which is the best estimate of the

true chance?
(Hacking 1965, p. 28)

Themethod of support answers only the first question. The other methods

discussed in this thesis answer the second question: they tell us which

hypothesis we should approve (or, in Neyman’s original theory, act on),

using considerations beyond merely which hypothesis is best supported

by the data xa. One possible position is that such considerations are

not germane; someone who took such a view would say that the method

of support answers Hacking’s question (1) and, a fortiori, his question

(2). But none of the prominent exponents of the method of support take

this view; they say that question (2) is beyond the scope of a completely

general method of inference, either because it is badly posed in one way

or another or because it requires subjective elements which are best added

by individual consumers of statistical analyses rather than by statistical

analysts (Edwards 1972, Berger & Wolpert 1988). If the beliefs of the

consumers are filled out numerically in the most natural way then this

latter view becomes equivalent to Subjective Bayesianism with the added

constraint that the analyst must not report his own priors.

A tricky problem for the method of support is how to present the re-

sults of an analysis. Unlike the Bayesian, the likelihoodist cannot give the

probabilities of the various hypotheses. Instead, a pure likelihood statisti-

cian can present the full likelihood function if the number of dimensions is
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not too great, or she can present a projection of the full likelihood func-

tion onto a smaller number of dimensions if the number of dimensions

would otherwise be too large. A likelihood function with two dimensions

(one dimension of probability and one dimension for a parameter in the

hypothesis space) can be drawn as a two-dimensional graph, like this:

Figure 4: A two-dimensional likelihood function

Functions with three dimensions can be drawn in projection using tricks

of perspective (although not by me!). But higher numbers of dimensions

than that are tricky to draw. However, there is no theoretical limit to how

many dimensions can be represented on a piece of paper. In a specific case,

it is hard to know whether it can be represented in two dimensions or not.

Much depends on the amount of data, the extent of redundancy in the data,

the intended audience and the ingenuity of the analyst.
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In the example below, a particularly ingenious analyst (Charles Joseph

Minard) crams five dimensions into two without even using colour. The

dimensions represented are: size of Napoleon’s armies in their trip from

Poland to Moscow and back again (width of main line — hatched to

represent outgoing armies and solid to represent homecoming armies),

position of army (two dimensions), time and temperature.55

Figure 5: Napoleon’s Moscow campaign (Tufte 2001, p. 40)

Still, the practical limit is three dimensions in most scientific applications,

one of which must be reserved for the probability axis: therefore, it is very

common that the complete likelihood function cannot be shown in a graph.

In any case, conveying a lot of information to an audience that prefers

to receive only a little bit is refusing to answer the question of what the

most relevant conclusions to be drawn from a piece of research are. The

55. Although the folly of war is beyond the scope of this thesis, it is remarkable that
Napoleon managed to kill 75% of his own army by cold and starvation (Winterson 1988)
before they even got to the city they had set out to attack.
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audience reading a report of a piece of statistical inference wants to be

given a simple answer not just as a summary of a complicated answer, but

as an additional piece of information: “In addition to all the things you can

tell me about the hypothesis space,” they cry, “what is the major take-home

lesson that ought to most strongly shape my future decisions?”

For these two reasons — inability to convey complicated information

on paper, and the need to highlight the most relevant aspects of research

results— it is often the case that the full likelihood function will not satisfy

all audiences. But that does not put paid to the method of support. The

best simple answer its adherents can give is still much better than a bare

dichotomy: it is usually a comparison of the likelihoods of a small number

of particularly salient hypotheses. Each comparison is simply a number:

one likelihood divided by the other, in accordance with Hilgevoord and

Uffink’s rule b (Hilgevoord & Uffink 1991). Often this tells us everything

we could reasonably want to know. Alternatively, high-likelihood regions

(typically intervals) of the hypothesis space can be quoted. Other methods

of reducing the likelihood function to something understandable are also

possible (Basu 1975, pp. 23–25).

FISHER’S FIDUCIAL INFERENCE

No-one is quite sure what fiducial inference is, even though it is frequently

mentioned. Its difficulty is due to the fact that its inventor said many

interesting things about it but not enough of them to amount to a definition

— not even an operational or pragmatic definition. Instead, he gave

paradigm examples which seem to determine its use in some cases but

not in others. This criticism of the “theory” of fiducial inference is widely
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acknowledged — for example, by Seidenfeld (1979, p. 3) and by Barnett

(1999, p. 299).

The fiducial theory appears to be as follows. (What follows is con-

sistent with Fisher’s most direct statements about the theory and, as far

as I can tell, with his examples. It is contradicted by some of his more

ambitious claims about the power of the theory.) Consider the maximum

likelihood estimator of a parameter θ. This is a function of the possible

observations X : f (X , θ) = θmax(X , θ) def= maxθ
(
p(X|θ)

)
. Now we can

invert this function: θ = f −1(θmax,X), and can use the value of the in-

verted function at the actual observation, θ = f −1(θmax|xa), as the basis

for probability statements about θ (Fisher 1930). The same method can

also be applied to a sufficient statistic for θ, instead of to θmax (Fisher

1973). (See chapter 13 for a definition of “sufficient statistic”.)

So the fiducial method is equivalent to the pure likelihood methods

discussed above except for one unimportant difference (using a sufficient

statistic of θ instead of using θ directly) and one important but naughty ad-

dition: the fiducial method regards the likelihood function as a probability

function, which no other method does (see below for why not).

The relationship between the fiducial method and Bayesianism is in-

structive. A prior probability function is needed to normalise f after

inversion (to make f to integrate to 1 by dividing it by a constant) to make

sure it is still a probability distribution. So it is natural for a Bayesian to

ask: what is the prior in Fisher’s method? The answer is that there is none.

The function is not normalised after inversion. This makes fiducial infer-

ence in most cases (not all) mathematically and epistemically equivalent

to Objective Bayesian inference constrained to use a flat prior probability
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distribution. Using a Bayesian method makes no sense to opponents of

Bayesianism; and constraining the prior probability distribution to this

extent makes no sense to Bayesians, for both philosophical and pragmatic

reasons. Philosophically, the prior distribution is meant to represent some-

thing — uncertainty in most cases (Savage & discussants 1962), epistemic

inertia (known in the literature on this topic as “conservatism”) in others

(Grossman et al. 1994, Freedman et al. 1983) — and a flat prior distribu-

tion has no degrees of freedom with which to represent any variation at

all in these things from situation to situation. Pragmatically, a prior which

is flat when measured according to one set of measures turns out not to

be flat when measured against another set of measures such as the squares

of the variables of the first part — this is essentially Bertrand’s paradox

(Jaynes 1973). As Rosenkrantz writes in a different context, “if we are

ignorant of θ, the argument runs, then, equally, we are ignorant of T(θ).

But if T is a non-linear function, like T(θ) = θk , a uniform distribution

of T(θ) induces [is both mathematically and epistemically equivalent to]

a non-uniform distribution of θ, and we have an obvious contradiction”

(Jaynes 1983, p. xiv).

Thus the apparently flat prior probability distribution is only flat on

a choice of measure, which is often ad hoc. This makes the whole fiducial

procedure underdetermined by the epistemic and physical aspects of the

situation it is meant to model. And as if that weren’t bad enough, Stone has

proved that using flat functions as priors leads to strict logical incoherence

in some cases (Stone 1976). Many modern Bayesians avoid the use of flat

functions to represent ignorance, for these and other reasons (especially

since Stone’s proof became known), but fiducial inference cannot avoid it.
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In addition to these philosophical criticisms, there are mathematical

reasons why we should not regard the likelihood function as a probability

function:

• It does not integrate to 1.

• In some cases it cannot bemade to integrate to 1 even by normalisation

(division by a constant) because in some cases its area is infinite.

• In some cases it cannot be standardised by Fisher’s preferred method,

which was to subtract a constant from the likelihood function so

that its maximum value becomes 1, because in some cases it has no

maximum value (and, even worse, it may be unbounded).

To summarise, most authors disdain fiducial inference on the grounds that

pure likelihood methods and flat-prior Bayesian methods embody concep-

tual mistakes (according to them); and the rest disdain fiducial inference on

the grounds that it embodiesmathematicalmistakes (according to everyone

except perhaps Fisher).

Since nobody approves of the fiducial method under its standard inter-

pretation, I have to briefly discuss possible reasons for it having ever been

taken seriously, or else it would seem as though I were hiding something.

Good suggests that the reasons are Fisher’s overwhelming personality,

combined with the lack of clarity in the exposition of the theory:

[I]f we do not examine the fiducial argument carefully, it seems
almost inconceivable that Fisher should have made the error
which he did in fact make [treating the likelihood function as
if it were a probability function]. It is because (i) it seemed so
unlikely that a man of his stature should persist in the error, and
(ii) because, as he modestly says . . . his 1930 ‘explanation left
a good deal to be desired’, that so many people assumed for so
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long that the argument was correct. They lacked the daring to
question it.

(Good 1971, quoted in Barnett 1999, p. 306)

A third possible explanation for interest in the fiducial method is the belief

that something fascinating and subtle lies buried in the method. All three

explanations are reminiscent of explanations given for the popularity of

Wittgenstein’s writings, although no hidden fascinating subtlety has yet

been found in the fiducial argument, whereas in Wittgenstein’s writings

many such have been found (albeit some of them mutually contradictory).

Insofar as fiducial arguments obey the likelihood principle they are

either pure likelihood methods or Bayesian methods (if any of the current

understandings of Fisher’s arguments are correct!), so there is no need to

consider them as a separate category in the rest of this thesis, in which I

concentrate on the likelihood principle.

OTHER PURE LIKELIHOOD METHODS

Other pure likelihood methods, such as estimation using the mean of the

likelihood function instead of its maximum, are possible but have never

developed in detail or evaluated. I see no reason to think that any of them

could fare better than the method of support.

2. PIVOTAL INFERENCE

Pivotal inference is mathematically fairly similar to Objective Bayesianism,

but unlike any of the Bayesian schools of thought discussed above it is not

guaranteed to obey the likelihood principle, even though it was invented
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by the inventor of the likelihood principle, G. A. Barnard. So far it has

proved of interest only to a very small number of theoretical statisticians.

Pivotal inference assumes thatH is indexed by a parameter θ, and also

assumes that we have a function P(x, θ) whose distribution as a function of

x is independent of θ (a function with this property is called a pivotal) and

that we have under consideration a family D of distributions for P. The

choice of P is generally underdetermined. In particular, in models which

have only location and scale parameters — which is the vast majority of

the models currently used in science— “there are lots of pivotal quantities.

. . . In general, differences are pivotal for location problems, while ratios (or

products) are pivotal for scale problems” (Casella & Berger 2002, p. 427).

We then find a function of this pivotal which is an ancillary statistic.

An ancillary statistic is any function of x which is not a function of θ or,

more formally:

h = h(x) is called an ancillary statistic if [the probability distribu-
tion] f admits the factored form

f (x, θ) = g(h)f (x|h, θ)

where g = g(h) = Prob(h(X) = h) is independent of θ.
(Birnbaum 1972, p. 858)

With appropriate restrictions on D, this ancillary is guaranteed to be

maximal in the sense that any other ancillary statistic is a function of it. Call

this maximal ancillary statistic a(x). We then calculate the unique function

q(x, θ) such that a(x)q(x, θ) = P(x, θ) (Barnett 1990, p. 320; Barnard 1985,

p. 58). If we have any prior information about θ, we state this in the form of

a prior probability function b(θ). This ability to bring in prior information

153



gives pivotal inference some of the advantages of Subjective Bayesianism,

although not the optimality property noted in chapter 3.

We then base our inferences about θ on the joint distribution of q and

b conditional on a. When b is a full prior distribution for θ, this procedure

is a form of Bayesianism, but when b is absent or only partial, pivotal

inference depends on averages taken over parts of the sample space which

were not observed, which is contrary to the likelihood principle and hence

contrary to Bayesianism.

3. PLAUSIBILITY INFERENCE

Plausibility inference was invented and developed by Barndorff-Nielsen

(1976) and (independently, but with less mathematical development) by

Gillies (1973). Gillies recommends that we use plausibility inference to-

gether with Frequentist inference, while Barndorff-Nielsen recommends

that we use it together with maximum likelihood inference; neither rec-

ommends that we use it on its own, so it is not clear that it deserves a

section in this survey. It is unclear, also, whether it is intended to be a

method of inference from data to hypotheses. Barndorff-Nielsen (1976,

p. 116) says that it “pertains to the predictability of the data on the various

hypotheses”, and explicitly not “to how well the hypotheses explain the

data”. Nevertheless, I include it in this survey, to be on the safe side.

Plausibility inference compares the probability of an observation to

the probability of the same observation under different hypotheses. So far,

this is the same as maximum likelihood estimation. But, unlike maximum

likelihood estimation, plausibility inference standardises these probabilities

as follows:
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Πh(xa) =
ph(xa)

sup
x∈Xph(x)

.

Inference is then based on the maximum plausibility estimator, which is:

ȟ = {h : Π(h) = supθ∈ΘΠθ(xa)}

In terms of Table 1, the plausibility of each row is the probability which

the hypothesis for that row assigns to the actual observation divided by

the largest number in the row; and the maximum plausibility estimator is

the row with the largest plausibility, or the set of rows which tie for first

place if there is more than one with equal top plausibility.

Plausibility inference suffers from essentially all of the criticisms I

make of Frequentist inference in chapter 7, as a result of its dependence on

an unobserved part of the sample space X , except that it does not suffer

from the ad hoc choice of test statistic which plagues Frequentist inference.

On the other hand, it fails to have what most supporters of chapter 4 see

as Frequentism’s main advantage: it does not give us fixed “error rates”.

4. SHAFER BELIEF FUNCTIONS

Glenn Shafer has proposed a non-Bayesian subjectivist theory of belief

updating (Shafer:1976, Howson & Urbach 1993, pp. 424–426). This is

a theory of personal beliefs, and has not been extended to a theory of

applied statistical inference: unlike any of the other theories described in

these survey chapters (with the possible exception of fiducial inference) it

does not offer any recipes for moving from scientific data to scientifically
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useful inferences about hypotheses. As Aickin writes, “one does not see

applications of Dempster-Shafer theory directed toward practical problems

of parametric inference” (Aickin 2000, p. 348). But many of the refinements

necessary to make it into an applicable statistical theory could perhaps be

borrowed, with some adjustments, from Bayesianism, in areas such as

the construction of prior belief functions, the possibility of robustness

theorems, and ideas about how to summarise a posterior distribution.

Natural choices of these adjustments are liable to make Shafer’s theory a

form of Bayesianism (Aickin 2000), but it need not necessarily be so. So I

will treat Shafer’s theory here as if it were a theory of statistical inference,

although I will not have anything to say about it elsewhere.

In Shafer’s theory, the doxastic agent starts with a hypothesis space

H , which (unlike H in any other theory except for some forms of Subjec-

tive Bayesianism) is taken to be exhaustive not only of the doxastic agent’s

partial beliefs but of all possibly true (or perhaps possibly believable) hy-

potheses, and for this reason Shafer refers to it as a “frame of discernment”.

The agent assigns a subjective basic probability to each set of hypotheses in

H . These “basic probabilities”must sum to 1, and the empty set of hypothe-

ses must receive “basic probability” 0, but otherwise they need not obey

the probability calculus. Given these basic probabilities, a belief function Bel

is then constructed on each subset s ⊂ H by taking the sum of the basic

probabilities assigned to s and all proper subsets of s. Bel is not required

to obey the probability calculus either. The range [Bel(s), 1−Bel(H \ s)] is

known as the belief interval for s.

Given basic probabilitiesm1 andm2, Shafer calculates an overall belief

function using a rule due to Dempster:
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m ∝
∑

A,B∈H ,A∩B 6=∅

m1(A)m2(B).

m1 might describe hypotheses simpliciter and m2 might somehow describe

evidence: this provides a way to turn Shafer’s theory of belief functions

into a theory of statistical inference.

Aickin (2000) notes that Shafer’s theory is (inappropriately) sensitive

to the order in which beliefs are updated, and suggests additional axioms

for the theory which fix this problem. Kyburg (1987) and Howson &

Urbach (1993, p. 424–430) give a number of objections to Shafer’s theory,

notably the following:

If you have equal degrees of belief in each of the numbers from 0
to 10 being called, then . . . you should not . . . have equal degrees
of belief in the propositions ‘0 will be called’ and ‘A non-zero
number will be called’. But in Shafer’s theory you can[.]

(Howson & Urbach 1993, p. 430)

So, Shafer’s theory arguably does not contain sufficient constraints on

beliefs to give them plausible identity conditions.

5. THE TWO-STANDARD-DEVIATION RULE
(A NON-THEORY)

A method of statistical inference widely used by sciences in which obser-

vations are cheap (notably, large parts of physics) is to tentatively reject

hypotheses according to which an observed data point is more than two

standard deviations from its population mean. No theory of statistical in-

ference can justify such a simple procedure, except as an approximation to
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more complicated procedures. It survives nevertheless because, precisely

in those sciences in which observations are cheap, tentatively rejecting

a hypothesis only means collecting more data: the lack of major conse-

quences of such an inference mean that justification can be treated more

lightly than it can in the other sciences.

This procedure can be given an approximate Frequentist justification

in many circumstances, and an approximate Bayesian justification in other

(overlapping) circumstances. It therefore belongs in chapter 4 or chapter

3. I mention it separately here because it is often considered separately

from its justification, and in that guise it belongs in neither chapter 4 nor

chapter 3; but in that guise there is nothing philosophical to say about it.

6. POSSIBLE FUTURE THEORIES

It is tempting to treat these survey chapters as a menu from which we

should choose the best form of statistical inference available, and many au-

thors have done just that (although usually picking from a smaller menu,

concentrating, quite reasonably, on the theories with the most detailed

philosophical underpinnings, namely Subjective Bayesianism and Frequen-

tism). It is tempting, but it is not what I will be doing; partly because I

have another agenda, and partly because the criticisms I have mentioned

of each theory strongly suggest that none of them is right as it stands, and

it is possible (for all I can show) that none of them is right even in outline.

In this thesis I wish to show particularly that there are no good

theories of statistical inference which do not obey the likelihood principle,

so I will devote a chapter (chapter 7) to making it plausible that there

are insuperable drawbacks to all the theories which both (a) have to date
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been given some theoretical justification and (b) contradict the likelihood

principle; all such theories fall into the Frequentist camp. It may seem a

little unfair to have a whole chapter on objections to Frequentism while

dwelling hardly at all on the objections to its main rival, Bayesianism;

but it is not as unfair as it seems, because I do not see Frequentism

and Bayesianism as exhaustive alternatives. My main claim (the likelihood

principle) is in conflictwithFrequentism, but that does notmean it supports

Bayesianism: while compatible with Bayesianism it does not show it to

be correct. The truth of Frequentism would imply that the likelihood

principle is false, and so I pursue the criticisms of Frequentism to some

sort of conclusion; in contrast, the truth or otherwise of Bayesianism does

not imply the truth or otherwise of the likelihood principle, so I need not

attack Bayesianism in detail.

The drawbacks of the other theories I leave as objections which may

or may not be overcome in future versions of the theories. In some cases

the objection is simply that no epistemic justification for the theory has

been given. I cannot say much more about these existing theories of infer-

ence; but I can say something more about all future theories of statistical

inference: I can classify them, ahead of time, according to whether they are

compatible with the likelihood principle or not. This gives us the following

picture:
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LP non-LP 

all possible theories of 
statistical inference

Figure 6

It seems to most authors, including me, that there is a useful dichotomy

between Frequentist statistics on the one hand and Bayesian statistics (both

subjectivist and objectivist) on the other:

Bayesian- 
ism

Frequent-
ism

all possible theories of 
statistical inference

Figure 7
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However, it would make more sense to show gaps between Frequentist

and Bayesian statistics, since the diagram is meant to contain all possible

theories of statistical inference, and there is no reason to rule out the

invention of new theories which are neither Frequentist nor Bayesian. In

other words, although Bayesianism contradicts Frequentism (as we will

see in more detail later) it is not the logical contrary of Frequentism. The

resulting diagram, incorporating these gaps, is as follows:

Bayesian- 
ism

Frequent-
ism

all possible theories of 
statistical inference

Figure 8

This can be put together with my first diagram in the obvious way:
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Bayesian- 
ism

Frequent-
ism

LP non-LP 

all possible theories of 
statistical inference

Figure 9

Note the very important point that the LP/non-LP line does not align with

the Bayesian/Frequentist line. There are both Bayesian and non-Bayesian

possible theories that obey the likelihood principle. There are also both

Frequentist and non-Frequentist possible theories that do not obey the

likelihood principle. There are, however, no Frequentist theories that obey

the likelihood principle, and no Bayesian theories that do not (with the

exception of some forms of Empirical Bayesianism, as discussed in chapter

3).

One of the main conclusions of this thesis will be that the best theory

of statistical inference — a theory we do not yet have — may lie in the

asterisked portion of the following diagram. It should obey the likelihood

principle, and yet it need not be Bayesian.
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Bayesian- 
ism

Frequent-
ism

LP non-LP 

all possible theories of 
statistical inference

Figure 10
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Part II

For and against the likelihood principle
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— 6—
Prologue to Part II

In Part II I will motivate, present and defend the likelihood principle, a

principle which I defined roughly in chapter 1 and will define inmore detail

in chapter 8. This prologue to Part II outlines roughly how I will do that.

Recall Table 1 from chapter 1:

possible symptoms
vomiting diarrhoea social other symptoms

withdrawal & combinations
(observed (not observed (not observed (not observed
in this case) in this case) in this case) in this case)

hypotheses

dehydration 0. 03 0. 2 0. 5 0. 27

PTSD 0. 001 0. 01 0. 95 0. 029

anything else 0. 001 0. 001 0. 001 0. 997

Table 1

It is time to consider the meanings of the rows and columns of Table 1 in

more detail.

The horizontal lines in Table 1 are meant to indicate that the prob-

abilities are conditional on the hypotheses. Thus, the probabilities in the
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first row are all conditional on the hypothesis that the child is dehydrated,

and the probabilities in the second row are conditional on the hypothe-

sis of PTSD. So each row is normalised (the probabilities add up to one).

Although the rows need to be normalised, the columns don’t, since the

numbers in the table are conditional on the row headings (hypotheses) but

not on the column headings (possible observations).

The symptom observed in a particular child is vomiting. Which

hypothesis about that particular child does this observation support?

The Frequentist answer is that if we take dehydration to be the null

hypothesis (which we should, as I will explain later) then we should reject

this hypothesis in a falsificationist fashion, and hence either accept the al-

ternative hypothesis that the child has PTSD or accept neither hypothesis.

As we will see, a Frequentist stastitician would support this inference by

quoting a type I error of 3% and a power of 97%.

Now recall the likelihood principle:

The likelihood principle

Under certain conditions outlined in chapter 2 and stated
fully in chapter 8, inferences from observations to hypothe-
ses should not depend on the probabilities of observations
which have not occurred, except for the trivial constraint that
these probabilities place on the probability of the actual obser-
vation under the rule that the probabilities of exclusive events
cannot add up to more than 1.

The likelihood function of the actual observation is given by the first

column inTable 1. So the likelihood principle entails that the falsificationist

method which rejects the diagnosis of dehydration, which uses numbers
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which do not appear in that first column, is not a good inference procedure.

And although the likelihood principle does not directly address the question

of evidential support, standard ways of applying the likelihood principle

(insofar as there are such things yet — it is early days in this field) are

likely to support a diagnosis of dehydration.

I will assume that we plan to analyse the table either by rows or by

columns. What I mean by analysing “by rows” is restricting our attention

to one or more rows. A typical Frequentist method does this by picking

one particular hypothesis as being of interest (such a hypothesis is a row

heading, known as the “null hypothesis”), and considering the values given

by the table for various possible observations, only one of which is the one

we have actually observed. I discussed this option in chapter 4, and will

return to it in chapter 7. By analysing “by columns” I mean restricting our

attention to the column corresponding to our known observation (which

is represented by a column heading).

Analysing by rows is considering p(e|h), the probability of evidence

given a hypothesis, with h (hypothesis) fixed and e (evidence) variable,

while analysing by columns is considering the same formula, p(e|h), but

this time with e fixed and h variable.

Why can we not analyse in some third way, perhaps with e and h both

variable? There are two types of reason for not considering such methods

here. Firstly, no well-worked-out version of statistics does so. But that is a

bad reason— perhaps as philosophers we should consider possibilities that

scientists have not got around to yet. Secondly, there is a better reason. We

are forced to consider at least the two possibilities of analysing by rows and

analysing by columns: forced to consider analysing by rows because that
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is what the vast majority of statistical analysis does, and forced to consider

analysing by columns by the proof which I will give later which shows that,

on rather mild assumptions, it is the only rational analysis. So we have two

ways of looking at the data, one of which wemust discuss as philosophers of

science because it is how scientists actually behave and the other of which

we must discuss because it is how they should behave, at least some of the

time. Of course I do not think I have demonstrated either of these points

yet; I am foreshadowing the fact that I will be demonstrating them later

merely to show that they are the two methods of analysis that we should

be concentrating on.

Despite these points, there are other ways of analysing the table, and

perhaps future work should have a look at the possibilities in the light of the

fact that the assumptions under which I will prove an analysis by columns

to be optimal are not always satisfied. In particular, when considering

vague hypotheses — something, remember, which this thesis does not

claim to do — looking at rows and columns simultaneously may make

more sense than the proposal I will develop here.

I start Part II by motivating the need for statistical inferences about

simple hypotheses to use probabilities which are conditional on the obser-

vation actually made (which is roughly equivalent to analysing Table 1 by

columns). I do this, in chapter 7, by showing the various problems which

Frequentist statistics encounter as a result of ignoring such conditional

probabilities. Chapter 7 has a dual function: by showing the importance

of conditioning, it motivates the likelihood principle; and at the same time,

it disposes of the main rival to the likelihood principle, by showing that

all well developed methods incompatible with the likelihood principle (all
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of which happen to be Frequentist) are subject to major and insuperable

problems. It is because of the neatness of this dual function that I delay any

detailed discussion of the meaning of the likelihood principle until chapter

8.

Having motivated the likelihood principle by discussing the impor-

tance of conditioning on the actual observation, I present various versions

of the likelihood principle (all of which entail that we should analyse Table

1 by columns) in chapter 8. I then give arguments against the likelihood

principle, with counter-arguments (chapters 9 to 12). All of this will even-

tually be followed, in Part III, by an argument in favour of the likelihood

principle and a case study on its application.
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— 7—
Objections to Frequentist Procedures

[Frequentist] theory is arbitrary, be it however “objective,” and the
problems it solves, however precisely it may solve them, are not even
simplified theoretical counterparts of the real problems to which it is
applied.

(Pratt 1961, p. 164)

In chapter 4, I defined Frequentist inference procedures. In this chapter I

will say much more about how they work.

This chapter serves two functions for the thesis as a whole:

• Its primary purpose is to show that we should not look to Frequentist

theories to provide the best theory of statistical inference, and thus

that they do not provide good alternatives to the likelihood principle.

• Along the way, it will motivate the idea that the problem with Fre-

quentist theories is that they are insufficiently conditional : that is, that

they fail to fully condition on, or take into account, the fact that out

of all of X only xa has occurred. Having motivated this idea here, I

will formalise it as the likelihood principle in chapter 8.

My tactics will be:

— first of all, to show that specific Frequentist methods are plausible

but, despite their plausibility, both ad hoc and inferentially useless;

— to give examples of the failures of Frequentist methods;

173



— to question the objectivity of Frequentist methods, although I will

conclude that their objectivity is not totally illusory;

— and then to diagnose the problem with Frequentism in terms of

— over-reliance on counterfactuals and

— the failure to condition on xa.

1. FREQUENTISM AS REPEATED APPLICATION
OF A PROCEDURE

Recall that the defining characteristic of Frequentist procedures is that

they base all their conclusions on functions averaged over the sample space

X . The rationale for this is the following principle (with the exact wording

varying between authors, of course):

A procedure for making inferences from data to hypotheses must
have good average properties on repeated application in similar
situations with different data.56

In a moment I will show how a suitable error set can be constructed; this

will lead to the definition of the P-value, the commonest type of Frequentist

statistic. I will then criticise the use of the P-value in statistical inference.

Then I will state the definition of the confidence interval, the only other

common type of Frequentist statistic, and criticise that.

Many of my criticisms will not rely on specific features of P-values

and confidence intervals but, rather, will apply to Frequentist procedures

56. We might elucidate this definition by adding that a good frequentist procedure must
have a low error rate, where an error rate is the proportion of times the procedure produces a
conclusion which is incorrect in the sense of falling in some pre-specified error set, conditional
on the truth of some hypothesis. But this does not really add anything to the definition, since
there is no general definition of an error set.
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in general. (I relate them to specific types of Frequentist procedures

mainly for clarity of exposition, and to show that my criticisms are directly

applicable to the types of Frequentist procedures in common use.) In the

remainder of the chapter, I will diagnose two problems which underlie all

the various criticisms: namely, firstly the inability of Frequentist methods

to take into account all the information which is available at the time of

analysis, and secondly an overreliance on hypothetical data which takes the

place of the neglected actual data.

In subsequent chapters, I will evaluate a remedy to these problems: the

likelihood principle. In order to begin to motivate this principle at the

same time as critiquing Frequentism, I must briefly discuss why we should

contrast the set of Frequentist procedures with the set of procedures which

obey the likelihood principle. That is the task of the next section.

GENERAL FEATURES OF FREQUENTIST PROCEDURES

Iwill argue that the principle onwhich Frequentism rests (that a procedure

for making inferences from data to hypotheses must have good average

properties on repeated application in similar situations with different data)

is misguided. It will not immediately follow from this that Frequentist

statistical inference is wrong. It will, however, immediately follow that its

distinguishing characteristic is no virtue; and from there it will be but a

short step to seeing that other theories of inference are more rational.

A Frequentist inference procedure must incorporate functions of av-

erages (possibly weighted averages) over the sample space (the space of

possible observations, X) . . . or provably give the same result as one which
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does. For example, recall from chapter 4 that the definition of a confidence

interval is:

If there exist functions of x, T↓and T ↑, both statistically inde-
pendent of θ [see chapter 13 for a definition of statistical inde-
pendence], such that

(∀θ) p(T↓ (x) ≤ θ ≤ T ↑ (x)) = 1− α

then the interval [T↓ (xa),T ↑ (xa)] is a 1−α confidence interval
for θ.

(adapted from Kendall & Stuart 1967, volume II, p. 99)

Note that the probability statement in this definition uses statistics defined

in terms of the members of X : that is why the observation is written as x

(a variable, denoting hypothetical observations) rather than xa (a constant,

denoting the actual observation). Once we have found functions T↓ and

T ↑which satisfy the probability statement, we switch our attention from

averages over possible values of x to the actual value, xa. This switchmakes

it a bit difficult to see what the probabilities are probabilities of: they are

in fact probabilities of the required relationship holding between T↓, T ↑

and θ in hypothetical repetitions of the merriment. That is why it is a

Frequentist definition.

Frequentist inference procedures can be contrasted with likelihood

procedures, by which I mean those which obey the likelihood principle.

Plausible likelihood procedures always have some justification other than

their behaviour on repeated application.

It may appear from this discussion as if the main difference between

Frequentist and likelihood procedures is that Frequentist procedures re-

tain their properties in long runs of experiments while non-Frequentist
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procedures do not. This is a good way to think about the difference for

most purposes, but it is not entirely accurate. Non-Frequentist procedures

can be repeated just as easily as Frequentist procedures can. The difference

is not whether these properties can or can’t be evaluated, or whether they

are or are not important. The difference is more subtle than that. It is that

if a Frequentist inference procedure is to be acceptable on the basis of its

Frequentist justification then it must be evaluated according to and only

according to its properties when repeated with imaginary random data

(plus, for pragmatic reasons, the mathematical tractability of its equations).

A Frequentist procedure must be evaluated in this way, while a likelihood

procedure need not be (depending on the intended audience).57

I said earlier that Frequentist procedures can be contrasted with like-

lihood procedures. This is because there are no generally applicable types

of statistical inference procedure which both obey the likelihood principle

and have good Frequentist properties. There are, however, certain token

statistical inference procedures which can be considered to have both a

reasonable Frequentist justification and a reasonable likelihood justifica-

tion (Deely & Lindley 1981). Such procedures only keep this confusing

property on some values of their parameters. For example, the procedures

used to calculate P-values are not generally compatible with the likelihood

principle. This can be shown inmanyways; for example, by Lindley’s proof

57. Although any likelihood procedure can be evaluated according to its Frequentist prop-
erties, in order to find out whether it can please a Frequentist audience, likelihood procedures
are very rarely evaluated in this way in the literature. I suspect that this is for the following
rather strange reason. According to the most vociferous non-Frequentist school of thought,
Bayesianism, there is a unique optimum inference procedure for any given (fully-specified) sta-
tistical model. Bayesians never vary from this optimum inference procedure (except for small
variations made for mathematical convenience). Since their optimality (in Bayesian terms) is
preordained by their method of construction, it is rarely necessary to evaluate their actual
properties on repeated use. For example, the Bayesian method of conducting pharmaceutical
trials had not been evaluated according to Frequentist criteria until (Grossman et al. 1994).
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that “for any classical significance level for rejecting the null hypothesis

(no matter how small) and for any likelihood ratio in favour of the null

hypothesis (no matter how large), there exists a datum significant at that

level and with that likelihood ratio” (Edwards et al. 1963, p. 219). And yet

some exceptional P-value calculations are compatible with the likelihood

principle.

Such exceptional instances are only both good qua Frequentist proce-

dures and good qua non-Frequentist procedures if they have coincidentally

suitable values of the hypothesis space h and the sample space X and other

parameters of the non-Frequentist procedure such as (for a Bayesian anal-

ysis) the prior distribution and the utility function. Even then they not

only have different justifications considered as Frequentist or likelihood

procedures, they also have different interpretations, and hence scientific

consequences, considered in these two ways.58

USES OF ERROR RATES: EXPECTANCY VERSUS INFERENCE

Hacking’s (1965) work on statistical inference suggests that we should

distinguish between two very different uses of the error rates which char-

acterise Frequentist statistical procedures. One use is in calculating what

our expectations of the average performance of a statistical procedure should

be. The other use — the one I am concerned with in this thesis — is the

use of error rates to perform statistical inference, by which I mean inference

from observations to hypotheses.

Hacking equates these two uses of error rates with uses of error

rates respectively before and after an experiment has been conducted. This

58. I will give an example of the different interpretations afforded to extensionally equiva-
lent Frequentist and non-Frequentist inference procedures in chapter 15.
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makes some sense: beforewe have data, we are likely towant to calculate the

average performance of a statistical procedurewhichwe are planning to use,

whereas once we have data we should ignore such average figures in favour

of evaluations of the actual performance of the procedure on the actual

data. However, I see two problems with equating the expectation-versus-

inference dichotomy with the before-versus-after-experiment dichotomy.

The first problem is that, as usual in epistemology, time is not an

important factor in its own right; it is a proxy for what order an epistemic

agent learns things in. Thus, instead of talking about before and after

collecting the data we should be talking about whether the collected data

is available at the point when the statistical procedure is evaluated. This

translates into on the one hand taking the data into acount in its own right

(as xa) and on the other hand taking the data into account merely as a

representative of some function of the data space X . The former option

translates directly into the likelihood principle;59 the latter option is the

definition of Frequentism.

A second problem with the pre- and post-experimental dichotomy is

that, as I argued in chapter 2, there is no need to assume that all data which

leads to a statistical inference comes from experiments.

For these two reasons, I will not be using Hacking’s insight in its raw

form, but rather in the guise of the likelihood principle.

59. I will return to the likelihood principle at the end of this chapter, where I will offer
factualism (acceptance of the likelihood principle) as an alternative to Frequentism.
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2. CONSTRUCTING A FREQUENTIST PROCEDURE

My main criticism of Frequentist inference, namely that it is counter-

manded by the likelihood principle, is completely general: it does not de-

pend on the specific features of any particular Frequentist method. Despite

this generality, we will need examples of Frequentist inference procedures,

for clarity. There is more than one important subtype of Frequentist infer-

ence procedure. I will give a philosophical exposition of a class of inference

procedures which is and has always been by far the dominant form in

both theoretical and applied Frequentist statistics: the P-value. I will also

briefly discuss the second-most-influential form of Frequentist inference,

“confidence” intervals (whose name is misleading, as we will see). Between

them, these two types of Frequentist inference procedure make up most of

the work of contemporary applied statisticians. I will make no attempt to

discuss any other Frequentist inference procedures in specific terms, but I

will give my criticisms of the procedures I do explicitly discuss in a form

which applies to all Frequentist inference procedures as far as possible, and

the final conclusions of this chapter will be stated in a formwhich uses only

those parts of my argument which do apply to all Frequentist inference

procedures.

In the next few sections, I will offer for consideration a function

which will stand as a candidate for use in Frequentist analysis. Rather than

starting with one of the procedures defined in chapter 4, I will construct

such a function from scratch. In this way, we will see clearly what issues

of justification arise.
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PRIVILEGING A HYPOTHESIS

By Frequentist lights, a procedure is evaluated according to its perfor-

mance on repeated application with different observations. In order to

give it fixed properties on such repetitions, we start by fixing our attention

on a single hypothesis of interest and comparing the probabilities in the

row of Table 1 (see chapter 1 or insert) designated by that hypothesis.

But now we are in trouble already. Fixing a single hypothesis can,

in general, be criticised for being ad hoc. This ad hockery is side-stepped

— or SUTC, for “swept under the carpet”, according to Good (1976) —

by noting that in most cases there is one hypothesis which it would be

particularly disastrous to believe were it false.60 So in these cases it is

less than totally ad hoc to single out a particular hypothesis. But this is

not a convincing justification for always doing so. In contrast, analysis

in line with the likelihood principle does not require (or, indeed, allow) us

to privilege a particular hypothesis. Instead, it requires us to privilege a

particular one of the possible vectors of observations . . . but that is easy:

we privilege the actual one, xa. It practically privileges itself.

60. In the case of clinical trials, for instance, it would be particularly disastrous for a drug
company or a regulatory authority to believe that a drug worked when in fact it did not, for
obvious reasons (displacement of better drugs, side-effects, litigation). Believing that a drug
was inefficacious when in fact it was efficacious, on the other hand, is much less damaging
from everyone’s point of view, especially when we bear in mind that similar chemicals are
likely to be tested later and correctly found to be efficacious. (Drug companies always test
many related chemicals when they sniff any possibility of being on to a good thing.) Similarly,
in Table 1 it is more important to make sure not to miss dehydration than to make sure not
to miss PTSD, since a child with undiagnosed PTSD will probably live to be rediagnosed
another day whereas a child with undiagnosed dehydration will almost certainly die quickly.
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CALCULATING A FREQUENTIST ERROR RATE

Having picked a privileged hypothesis, h0, we need a suitable way of calcu-

lating an error rate:

Error rate: The proportion of times an experiment gives an
answer that falls into some predefined error set, if repeated in-
finitely or indefinitely.

If such a number is small then we have an observation which is unlikely

according to h0. That in turn seems to speak against h0. This last step

appears obvious to most writers on statistics. It is vitally important, so I

will give it a name:

The unlikely events principle:

A hypothesis which assigns a low probabilities to an event is

disconfirmed by the occurrence of that event to the extent that,

if a hypothesis says that an event is unlikely, and yet that event

occurs, it is reasonable to conclude, at least tentatively, that the

hypothesis is probably false.

This principle is related to Cournot’s principle (sometimes attributed to

Kolmogorov or Popper), which says that “certain events [those with low

probabilities] are so unlikely as to be ‘essentially impossible’ ” (Sorkin

1983). (Thanks to Alan Hájek for this point.) According to this prin-

ciple, a hypothesis can be falsified by predicting that an actual event is

improbable. Cournot’s principle is not the only way to justify the unlikely

events principle, and it may be better to see the unlikely events principle

as primitive. In any case, the unlikely events principle is essential to the
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standard justification of Frequentist procedures. Recall that Fisher, when

defending Frequentist tests, wrote:

The force with which such a conclusion [rejection of h0] is sup-
ported is logically that of the simple disjunction: Either an ex-
ceptionally rare chance has occurred, or the theory of random
distribution is not true.

(Fisher 1973, p. 39)

The disjunction itself is trivially true; but it would not have any connection

to the first part of Fisher’s statement, about drawing conclusions, were it

not for the unlikely events principle.

I will return to this principle later. First, let us find a plausible way

of calculating an error rate.

First candidate error rate

The first thought about how to calculate an error rate, both historically

and, perhaps, in the mind of the reader, is to calculate the probability that

we would have seen the observation if the null hypothesis were correct —

p(xa|h0). Using this as an error rate means using {x : p(x|h0) < 5%} as

the error set. (As is well known, the figure 5% is ad hoc and could just

as well be replaced by some other figure, so there is an ad hoc element

in this suggestion.) This is my first candidate error rate. It is the most

straightforward reading of Popper’s idea of subjecting a hypothesis to a

severe test (Mayo 1996). It is also what some prominent philosophers of

science, includingMayo (2000, p. 181) at least sometimes, think statisticians

do.
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But statisticians never use p(xa|h0) to calculate an error rate, and for a

very good reason. Suppose for the moment that only a finite number of ob-

servations is considered possible. The probabilities of all the observations

put together must be 1, so if there are a lot of possible observations — and

there usually are— then most of themmust have low probabilities. If their

probabilities are not too wildly different from each other then it follows

that all of them must have low probabilities. In that case, every hypothesis

will be falsified by any piece of evidence. This is true whenever there is

a large number of possible observations of roughly equal probability, and

also in many of the cases typically found in applied statistics, including

some cases in which the observations are not of roughly equal probability.

(There is a trade-off between the variability of the observations and their

number.)

For example, I toss a coin twenty times and record the exact sequence

of heads and tails, and then consider p(xa|h0) where h0 is the hypothesis that

the coin is fair. Then nomatter what xa is, p(xa|h0) is less than 0.000001. (For

example, p(HTTTTHTHTTTHTHHTHHTH ) = (½)20 < 0. 000001.)

This will not do as an error rate with which to evaluate the procedure

(even though technically speaking it is a perfectly valid error rate), because

it cannot be large no matter what xa is.

Now let us turn to the case in which infinitely many possible observa-

tions are under consideration. This case is also very common: it typically

occurs when we want to estimate some parameter θ which takes values

from the real numbers (or, more generally, fromRn). For example, we may

want to test the hypothesis that a particular foetus is at normal weight
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for its age from the abdominal measurements of its mother. The hypothe-

ses will have the form ph0 (θ|abdominal size) = fh0 (abdominal size), where

fh0 is some appropriate probability density function such as a log-Normal

distribution. Now if we calculate the formula p(xa|h0), we find that it is

always zero: in order to account for the fact that infinitely many foetus

sizes are possible for each abdominal size, the formula assigns a value of

zero to each. (Some would say that it has to assign a value of zero to each;

others only that it typically does. The dispute there turns on whether

probability density functions may incorporate delta functions to represent

“lumps” of probability. Berger & Sellke (1987) argue that they may and

often should; a more orthodox Bayesian viewpoint is that they must not,

since delta functions are not strictly functions. Either way is fine for my

argument.) The reason why foetus sizes are assigned probabilities of zero

is that probabilities of hypotheses correspond to areas on the following

graph, and the probability of a point hypothesis (the hypothesis that the

foetus is exactly θ long) is the area of an infinitely thin slice of the graph.

(Of course we could avoid this problem by restricting ourselves to discrete

values of abdominal size instead of all the values in R, as we could with

any infinite sample space; then we are back in the position discussed in the

previous paragraph.)
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Figure 11: probability of abdominal size under h0

This function never has a value of zero, and yet each slice (e.g. at 36) has

zero area. This is what wemean by calling the function a probability density

function.

Hence, our first candidate for calculating an error rate does not work

when the number of possible observations is large or infinite.

Second candidate error rate

Why not use the height of the graph at the relevant place, instead of

the area of the slice, to construct an error rate? This is our second

candidate error rate. A mathematician’s immediate thought would be

that this candidate makes no sense, because the height of the graph (in

the continuous case) does not represent the probability of anything — the

graph is a representation of a function designed to integrate to a probability,

not to represent a probability directly. Let us put such squeamishness to

one side, and take the height seriously for a moment to see what happens.

We cannot simply take the height as a probability, because the height of the

graph may be more than 1 in places, but we can think of various proposals

186



to fix that problem: perhaps, for example, we can reduce all the heights

by subtracting or multiplying by a constant. This has been suggested by

Fisher (1973, p. 76) and Edwards (1972).

If we implement some such strategy to make sure the height of the

graph never exceeds 1, we get a procedure which, as far as I can see,

is satisfactory according to the logic of falsificationism. But it is not

satisfying simpliciter. Firstly, the answers we get in typical situations

are still counter-intuitive: the coin-tossing example gives a graph with

a constant height of 0.000001 as well as with a constant probability of

0.000001. A second problem with this proposal which is more severe,

although less ubiquitous, is that sometimes the graph has no maximum

value. (The graph of ln(x) from x = 0 to∞ has this property, for example.)

Then there is no such way of preventing the height of the graph from

exceeding 1 (Bayarri et al. 1987). So there is no natural way of turning

the height of the graph into a probability; and hence there is no natural

way to use it to calculate an error rate. This is not a conclusive argument

against using the height of the graph in some way, but it is a reason to look

elsewhere for our error rate.

Grouping possible observations

The obvious next move is to avoid having to consider the case of the

large hypothesis space which has proved so difficult, and to do this by

grouping the large number of possible observations into a small number

of clumps. This makes complete sense from the purely mathematical point

of view, but it is worryingly dependent on a choice of grouping strategy,

and different grouping strategies give very different conclusions. If we

group the possible observations in large clumps then we do not distinguish
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adequately between importantly different pieces of data. If we group in

small clumps then there are too many clumps, so again the answers we get

for typical hypotheses are unacceptably counter-intuitive (again, we find

that many perfectly reasonable hypotheses are falsified by any observation).

Moreover, we may get different results for different clumpings. What we

need is a grouping strategy which is in some sense natural and which does

not give counter-intuitive results.

Such a grouping strategy is available, at least in most cases. It is

this: group the observation which was actually seen together with all

possible observations that are in some mathematical sense more extreme

than it. Typically this is a tail area, p(x ≥ xa|h0), as shown below. This

is the grouping strategy which is, and always has been, used in almost all

Frequentist analyses.

Figure 12: a tail area representing p(x ≥ xa|h0)

If you teach statistics to bright undergraduates, you find that occasionally

a student asks, “Yes, but why do we calculate the tail area?” I know of

only two justifications for this grouping strategy, and only one of them
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makes it seem more than ad hoc. The first justification is that it works: it

gives answers which, by and large, are not counter-intuitive. The other

justification— the less ad hoc one— is that it can be shownmathematically

that this grouping strategy gives the same results as a Bayesian analysis of

the data in a variety of moderately common cases (Deely & Lindley 1981).

Accepting the correctness of a Bayesian procedure is the only honest way

I know to answer the student’s question. Should the student not want to

accept Bayesianism then I can see no answer to her question (and should the

student want to accept Bayesianism, she would presumably see no reason

for calculating Frequentist error rates at all).

Despite its ad hocness, this is the path that applied statistics has taken:

one calculates tail areas. Since no-one (to the best of my knowledge) has

suggested any other completely general way to instantiate error rates

statistically (apart from confidence intervals, discussed below), we will

have to take this as a given for the moment.

This solution can be applied in the discrete case too: again, one takes

tail areas — p(x ≥ xa|h0).

A better candidate error rate: the P-value

The previous section has motivated the use of tail areas in calculating error

rates. It remains to find a formula for doing this.

Recall the definition of an error rate:

Error rate: The proportion of times an experiment gives an
answer that falls into some predefined error set, if repeated in-
finitely or indefinitely.
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My tentative candidate for an error rate is as follows. First of all we

calculate a number called P, thus:

P(h0,T(xa)) is defined as the proportion of an infinite sequence
of hypothetical experiments, each duplicating the experiment we
have actually conducted, on the assumption that the hypothesis
h0 is true, that would result in a value of T(xi ) greater than
or equal to T(xa), where xi is the observation made in each
hypothetical experiment, xa is the observation made in the actual
experiment, and T is an arbitrary function from the space of
possible observations to the real numbers.

Then we reject h0 if P is less than some fixed value p0.
According to the falsificationist thinking of Neyman, if P is suffi-

ciently small then we should reject the hypothesis h0.61 Interestingly, what

we should do if the number is large (close to 1) is not quite as widely

agreed. It is standard practice among scientists nowadays to take a large

number as evidence in favour of h0, but Neyman, who was a very orthodox

falsificationist (and who was responsible for promoting falsificationism in

science, and who by the way was much more influential in this project

than Popper was) believed that the size of P should make absolutely no
difference, except that we should note whether it was on one side or the

other of the agreed cut-off. Meanwhile, Fisher took the view that a large

value of P was evidence against h0! Fortunately, all Frequentist schools of
thought agree that finding a small value of P should lead us to reject h0, so

61. This is a convenient simplification. What he actually says is that we should reject
h0 if and only if p (xa|h0) falls into some small predefined error set. My discussion above
explains why this error set was and is always taken to be a tail area, even though according
to Neyman’s theory it need not be. Salsburg (1989) gives arguments showing that defining
the error set in any other way will not help; in chapter 13 I give more general arguments for
the same conclusion by proving the likelihood principle.
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I will concentrate on that eventuality for the moment and deal with large

values of P later.

CHOOSING A TEST STATISTIC (T)

Why do we need the function T in the definition of P? The important
point to remember is that xi are vectors, and typically high-dimensional

vectors at that. A typical xi in medical research is a very large, complexly

structured vector part of which might look like this:

<age of subject 1: 801 months,

initial tumour histology for subject 1: t35,

initial treatment for subject 1: radiotherapy,

size of subject 1’s tumour at 6 months: unknown,

side-effects at 6 months: unknown,

size of subject 1’s tumour at 13 months: 11 mm,

side-effects at 13 months: unknown,

adjuvant treatment for subject 1: chemotherapy,

site of subject 1’s secondary tumours: leukemia,

. . .

age of subject 2: 684 months,

initial tumour histology for subject 2: q+,

initial treatment for subject 2: none,

. . .

age of subject 3: 787 months. . .>

We have already seen that we need something like a notion of one

value of X being more extreme than another. In other words, we need the
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set X of possible outcomes to be ordered . But there is no natural sense in

which this whole n-tuple is bigger or smaller than another one (except in

the vanishingly rare, trivial case in which one has bigger numbers in every

dimension than the other).

There is no general, non-arbitrary notion of one vector being bigger

than another (or more extreme in any other sense). If one thinks of vectors

in Euclidean three-space, there is an obvious sense in which one vector is

bigger than another, namelywhen the naturalmetric ||x|| =
√
x2x + x2y + x2z

assigns one vector a greater length than the other; but that relies on the fact

that dimensions in Euclidean space are commensurable with each other, in

the sense of being merely rotations of each other. Statistical sample spaces

are not at all like this (at least, not usually). xi above is a vector in a very

general sense: it is an n-tuple of observations, each of which can be of any

observable type at all.

To make matters even more complicated, the vectors in the sample

spaces of clinical trials don’t even have the same number of dimensions as

each other, since the various vectors represent different possible outcomes

in which different numbers of subjects have been recruited and followed

up. (Thus, the vectors are not even in the same vector space, unless we

artificially extend some of themwith zeros.) Traditionally the sample space

in Frequentist inference is restricted to samples of a fixed size (although

I am aware of no philosophical justification for this — indeed, it seems

inconsistent withNeyman’s basic theory), but thismaneuvre is not possible

in large clinical trials, in which the results are analysed as they are collected

(for scientific, ethical and legal reasons — more on this in chapter 15) and

in which conseqently there can be no fixed sample size.
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So, how can we compare vectors which are not naturally comparable

to each other? Only by allowing the statistician to introduce an arbitrary

function T which reduces each vector to some ordered quantity (almost

always a single real number). T(X) is known as a statistic or test statistic.

The raw data can fail to be commensurable with each other even if xi is

scalar (not a vector). Consider the set of possible observational outcomes

X = {a sheep, a cow, a goat}. For the sake of argument, suppose we

observe a sheep. How are we going to obey P ’s requirement that we
consider the probability of observing the actual observation or something

more extreme? Is a goat more extreme than a sheep? Perhaps this is a

bad example, since a goat is more extreme than a sheep, but the moral is

clear: these comparisons are artificial. In order to analyse the result of this

experiment using P, we need to explicitly introduce a function T which
maps the set X of possible outcomes to an ordered set.

Another use for T is to allow adjustments to be made for data which

have not been measured for one reason or another, such as because a trial

subject cannot be contacted. These adjustments are known as “censoring”,

and the mathematical problems they cause are of major concern in the

literature. I discuss censoring in chapters 9 to 12.

Historically, a more important function of T used to be to simplify

the data for computational purposes. But since the 1980s computers have

been fast enough to alleviate the need for this in most cases. T is still con-

sidered important by statisticians for four reasons: (i) for the philosophical

reasons given above; (ii) because computers are not fast enough to analyse

unreduced data in all cases; (iii) because humans like to be able to make
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pencil-and-paper approximations to the calculations their computers are

making; and (iv) as a matter of historical inertia.

For all we have seen so far, T could be completely ad hoc; and in

many cases it is. But there are principles which constrain the choice of

T to some extent. In particular, in many cases it is possible to choose a

“uniformly most powerful” statistic (one with the highest possible power

for every value of θ). Despite the name, uniformly most powerful statistics

are not always the best statistics to choose. One reason for this is that “[i]t

is possible for an outcome to be significant at one level but not at a less

extreme level by uniformly most powerful tests” (Pratt 1961, p. 166, citing

Lehmann 1959, p. 116). But I do not need to insist on that point, because

in some situations a uniformly most powerful statistic cannot be chosen

because there isn’t one.

That T suffers from an ad hocness problem should not be surprising,

given the example of the sheep and the goat. The fundamental nature of

the problem is very simple: use of the procedure P relies on our possible
observations being ordered; but there is no general reason to think that

our possible observations should be ordered, in any sense that has any

epistemic importance, and often they patently are not; so in order to make

P work at all, we have to artificially order the elements of X . Now, if we
were doing that merely for some presentational reason — for example, to

print them out into a readable table— this would be a very minor problem.

But the ordering of X is buried deep in the analysis. P does not first tell
us that h0 is (or isn’t) believable and then present the results in terms of an

ordering of X ; it tells us that h0 is (or isn’t) believable simpliciter. But to

decide whether it is (or isn’t), P uses an ordering of X .

194



To translate this into concrete terms, someonewho orders goats above

sheep will come to one conclusion about the farmyard experiment, while

someone who orders sheep above goats will come to a different conclusion;

and their ad hoc assumptions about farmyard hierarchies are typically

hidden from each other. So the ordering of X is important but is not

available for perturbation analysis. (Perturbation analysis is the testing of

mathematical variations on assumptions to see what difference that makes

to conclusions.) If their assumptions were not hidden from each other, the

source of their disagreement would at least be clear; but there would still

be no natural way to resolve it.

Approaches to statistical inference based on the likelihood principle

(such as Bayesian statistical analysis) have no general need for test statistics.

This difference between likelihood and Frequentist approaches is often

misunderstood or misleadingly described in the literature, when it is noted

at all. For example, Barndorff-Nielsen writes (about his own methods,

which are not strictly Frequentist, but which do require test statistics; see

chapter 5 for details):

In most cases [my methods] should be applied not to the original
data x and the model for x, but to some suitable statistic T of x,
and a derived model for T , and the [question] is that of which T
and derivedmodel are to be considered. Stated briefly the answer
is that, before estimates and tests are computed, the inference
problem should be purged for [sic] irrelevant features by such
means as margining to sufficient and conditioning on ancillary
statistics. It must be emphasised that likelihood inference is
subject to a similar qualification.

(Barndorff-Nielsen 1976, p. 105)
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This seems to suggest that a scientist, whether using Frequentist or likeli-

hoodmethods, must purge hermodel of irrelevant features before statistical

inference can be conducted, using difficult procedures such as conditioning

on ancillary statistics (defined in chapter 5, and again below). But in fact

that is the case only for Frequentist methods (and closely related methods

such as Barndorff-Nielsen’s own), not for methods obeying the likelihood

principle. Barndorff-Nielsen continues:

There is the difference though that in likelihood inference often
part or even all of the necessary purging is taken care of au-
tomatically because factors, of the original likelihood function,
depending only on the observations and/or on possible inciden-
tal parameters do not influence estimation and testing pertaining
to the parameter of interest.

(Barndorff-Nielsen 1976, p. 105)

In other words, in likelihood inference there need be no extra step of

purging the model of extraneous features: it will be done automatically

by the main analysis itself. And even this is still a little misleading. In

fact, extraneous features in Barndorff-Nielsen’s sense can be kept in the

model all the way through the analysis, if required: any analysis which is

in accord with the likelihood principle will automatically cope with them,

in the sense of giving the same answer as if they had not been present.

Apart from the ad hocness introduced by h0 and T , P is a very
straightforward function. It is one way of capturing the idea of analysing

Table 1 by rows. I will consider another way later; but first I will evaluate

P.
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T’S LACK OF INVARIANCE

It is sometimes the case that two rival test statistics produce different

results — one leading to the rejection of a hypothesis and the other not

— even though the two statistics, t1(xa) and t2(xa), say, are merely bijective

transformations of each other (i.e., the value of each fully determines the

value of the other) (Howson & Urbach 1993, pp. 191–192). In such a case,

the two statistics clearly embody exactly the same information about the

observation, and yet they give contradictory results. Not only may t1 and

t2 give different results, often one will have good Frequentist properties

while the other has bad Frequentist properties: thus, the property of

being a good Frequentist procedure is itself not invariant under bijective

transformations. (Jos Uffink has brought this point to my attention.)

But such a bijection is merely a Cambridge change: it is merely a

change in description which leaves the thing described unaltered, without

even changing the extent of our knowledge about it. Our epistemic infer-

ences ought to be similarly unaltered. So an inference procedure that uses

a quantity which is not invariant under a bijective change of variables is

irrational. Dawid calls this requirement the “transformation principle”:

Transformation Principle (TP). Let ξ : [xa] ∈ [X ], and let t :
[X ] → Y be one-to-one [bijective]. Then TP requires: (i) ξ ∈ Ξ
[the set of all possible experiments]⇒ ξT ∈ Ξ and (ii) I (ξ, [xa])
[any inference drawn from xa] = I (ξT , t([xa])) [the analogous
inference drawn from t(xa)].

(Dawid 1977, p. 248)

A further argument in favour of the transformation principle is as follows.

“[I]f the inference made in a given experiment [or merriment] depends only

197



on a certain function of the raw data, then the same inference should be

made if only that function is made available” (Dawid 1977, p. 250). This

can be stated formally as follows:

Reduction Principle (RP). Let ξ ∈ Ξ, ξ : [xa] ∈ [X ]. Consider an
[inference procedure] I , and letT = t([xa]) be a statistic satisfying
the following definition.

Definition. T is reductive for I in ξ if I (ξ, x1) = I (ξ, x2)
whenever t(x1) = t(x2). (Thus I depends on the data
only through the value of T).

Then RP requires: (i) ξT ∈ Ξ and (ii) I (ξ, [xa]) = I (ξT , t([xa]))
[with notation as in Dawid’s transformation principle above].

(Dawid 1977, p. 250)

This reduction principle entails the transformation principle, as the fol-

lowing simple argument shows. Let t be any bijection on X . Then t

is necessarily reductive in the sense of the above definition, because if

t(x1) = t(x2) then x1 = x2 and so of course I (ξ, x1) = I (ξ, x2). Thus the

transformation principle depends only on the almost undeniable reduction

principle, even though the latter may seem much weaker at first sight.

The transformation principle is satisfied by many statistical methods

obeying the likelihood principle. For example, likelihood ratios (the basis

of almost all Bayesian inference and much of pure likelihood inference,

as discussed in chapter 3 and chapter 5 respectively) are invariant under

any transformation of θ and x. Maximum likelihood inference, however,

need not satisfy the transformation principle (Dawid 1977, p. 250, citing

an example due to Pratt). Nor need Bayesian inference with an improper

prior (a prior not integrating to 1) (Stone & Dawid 1972): this failure is
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related to Stone’s (1976) proof that Bayesian inference with an improper

prior can be internally inconsistent. (I come back to this issue several

times in chapters 9 to 12.)

Dawid (1977, p. 248)makes the point that the transformation principle

is “often violated in practice. A statistician may be tempted to assume

normality, for example, for the data as actually presented, unless there is

sufficient evidence to the contrary. If the data were to be transformed

before presentation, he might well end up with a different inference”. Such

behaviour amounts to changing ph , h ∈ H , and hence H , after seeing xa.

Dawid seems to be referring to cases in which the statistician has very

little guidance on how to set H and therefore uses xa to help him to take a

punt. This violates the spirit of the likelihood principle but not the letter,

because such a statistician is operating outside the framework of chapter 2,

which took it for granted thatH was fixed independently of (and typically

prior to) the observation of xa. Regardless of what we ought to think of

this sort of case, it is clearly different in principle from the violation of the

transformation principle which Frequentist inference entails, which occurs

whether or not the framework of chapter 2 applies and whether or not the

statistician has a good grasp of H . One way to express this difference is

to note that in Dawid’s example the statistician may be willingly risking

incoherence, in desperation (since ex hypothesi he has very little idea of

how to setH ), whereas in the Frequentist case he is forced to be incoherent

(in the sense of violating the transformation principle) whether he likes it

or not.
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PROBLEMS DUE TO MULTIPLICITY

The best that can be said for P is that it has the property that if the same
analysis is repeated on a long sequence of experiments which are identical

except for random variation it will correctly fail to reject h0 in 95% of

cases in which h0 is true, assuming that the model is correct (in particular,

that all measurement error is entirely represented in the model). I have

already argued that P is ad hoc; I will argue in later sections that it is not
as informative about H as it appears to be; and in this section I will argue

that it effectively fails to have the attractive theoretical property which I

have just cited.

The reason why P effectively fails to have this property is that prac-
tically no experiment calculates a single P-value. When more than one

P-value is calculated, each one has a chance of being in error, so the statis-

tical analyst faces a dilemma:

• give each P-value an error rate of 5%, in which case the analysis as a

whole will have an error rate greater than 5%; or

• adjust each P-value so that the overall error rate of the analysis re-

mains 5%.

Since the whole point of Frequentist theory is to make mistakes at most

a known proportion of the time, a fully Frequentist theory must take

the second fork of the dilemma and adjust each P-value (Neyman 1937,

Kendall & Stuart 1967, Stuart et al. 1999, Mayo 1996). This is usually

done using a Bonferroni correction, in which the cut-off for attributing

statistical significance “at the 5% level” becomes (5% / n), where n is the

number of P-values (or equivalent measures, such as confidence intervals)

being calculated. Such a correction is called a correction for multiplicity of
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analyses. Not all Frequentist analyses use such a correction, but practically

all works on Frequentist theory say that they should, and Frequentist

analysts who omit to use a correction typically amend their ways when

taken to task.

But then each P-value has a probability of error (in the Neyman

sense of “probability”) which depends on how many other P-values are

being calculated as part of the same analysis. This has the following bad

consequences:

• It means that when we read a P-value in a scientific paper we cannot

tell what its error rate is unless we have been told how many analyses

the experimenters made. If they do not tell us that or if we see the

P-value quoted out of context there is no way to tell what its error rate

is.

• When a single experiment is analysed by two or more analysts who

calculate different numbers of P-values, they reach different inferential

conclusions, despite their analyses being based on the same data.62

I have stated this problem in terms of P-values, but it should be clear that

it arises for any method of statistical inference based on error rates — i.e.,

62. I do not have space for detailed examples here, but I should mention that this effect
is responsible for much of the confusion surrounding statistical analyses of rare events such
as brain tumours in cell phone users or around power lines: looking at the same data, some
statisticians have calculated many P-values in order to turn up whatever health problems may
be there; these statisticians have used Bonferroni corrections with large values of n, which
makes their P-values statistically insignificant. Hence, these statisticians conclude that cell
phones or power lines or whatever do not cause cancer, and their conclusions are quoted
by companies with an interest in continuing to sell cell phones and overhead power cables.
Meanwhile, statisticians with a particular interest in one phenomenon — say, cell phone use
— calculate a single P-value, which is then much more likely to be statistically significant:
its cutoff for statistical significance is n times as large as the generalist statisticians’. These
statisticians are much more likely to conclude that cell phones do cause cancer, and their
conclusions are quoted by shock journalists and health compaigners. Both sets of statisticians
are looking at exactly the same data (necessarily so, in this case, since there is only one set of
cancer data) and both are using a 5% significance level.
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for any Frequentist method. I will give a more detailed example in chapter

15.

A related problem is that there is no way to combine P-values from

separate merriments to produce a valid P-value for the overall data (with-

out re-analysing the individual data points from both merriments, which is

usually impossible for reasons of logistics and intellectual property). Im-

portantly, this is in contrast to likelihood methods, which allow us to very

easily combine likelihoods from separate merriments without needing to

look at individual data points: we simply multiply the likelihoods. This is

because if T(x1) and T(x2) are independent statistics from the same statis-

tical model (i.e., x1 and x2 do not depend on each other) then the product

of their likelihoods is the same as the likelihood of a combined observation

consisting of the data from x1 and x2 put together; but there is no function

of two Frequentist statistics alone which gives the statistic that would be

calculated if the data were pooled. For example, there is no function of two

confidence intervals which gives a confidence interval for the combined

data. Perhaps this is a less deep criticism of Frequentist methods than my

other criticisms, since it could, in principle, be overcome by the (drastically

impractical) method of always publishing all the raw data on which every

analysis is based.

ARE P-VALUES INFORMATIVE ABOUT H?

A first suggestion that, in addition to being ad hoc, P-values do not give

us useful information about H comes from a point which I made in the pro-

logue: that Frequentist methods often reject a hypothesis which is clearly
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favoured by the data not just despite but actually because the hypothesis ac-

curately predicted that events which did not occur would not occur. They

reject a hypothesis because it got its counterfactuals right . This claim was

first made by Jeffreys, in what has become one of the most quoted passages

in the philosophy of statistics literature:

P . . . gives the probability of departures, measured in a particular
way, equal to or greater than the observed set, and the contribution
of the actual value is nearly always negligible. What the use of P
implies, therefore, is that a hypothesis that may be true may be rejected
because it has not predicted observable results that have not occurred.
This seems a remarkable procedure. On the face of it the fact
that such results have not occurred might more reasonably be
taken as evidence for the law, not against it. The same applies
to all the current significance tests based on P integrals [which
includes the rejection of hypotheses on the basis of confidence
intervals — see below].

(Jeffreys 1961, p. 385)

Jeffreys’s argument, taken more slowly, is as follows. First of all, the

probability of the actual observation, p(xa|h0), is almost irrelevant to the

value of P . . . and, in the common continuous case, it is literally irrelevant
to P. The probabilities which make up P are the combined probabilities
of observations greater than xa. These observations did not occur, and if

h0 assigns a low probability to them then it is correctly failing to predict

them (or retrodict them). Now suppose that the calculation of P leads
to the rejection of h0. Then the aggregate probability of the values of x

greater than xa must be small. In particular, h0 is rejected if this aggregate

probability is less than some critical value, typically 5%. Since it is the

correctness of h0’s prediction that the observations in question did not
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occur which leads to the small value of the aggregate probability, and since

it is the smallness of the aggregate probability which leads to the rejection

of h0, it is the correctness of one of h0’s predictions which leads to its own

rejection.

The above argument is not a mere logical trick. Compare Figures 13

and 14:

Figure 13

Figure 14
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In Figure 13, a significance test based onP rejects h0, and the rejectionmay
seem appropriate. But if we change Figure 13 to Figure 14, in which h0 no

longer gives such a low probability to observations larger than xa, we have

a situation in which h0 will not be rejected, although the probability of the

observed result stays the same as it was in Figure 13 (and, incidentally, the

probabilities near the centre of the graph also remain almost unchanged).

Jeffreys’s argument can be illustrated without resorting to the squig-

gly distribution shown in Figure 14. It is hard to illustrate the point on

a continuous distribution without resorting to squiggles, because small,

smooth changes in continuous distributions are hard to notice on a graph;

so to show how the point applies to non-squiggly distributions I will

quote an illustration with a discrete sample space, adapted from (Berger &

Wolpert 1988, p. 106):

x = 0 x = 1 x = 2 x = 3 x = 4

P(x|h0) .75 .14 0.4 .037 .033

P(x|h′0) .70 .25 0.4 .005 .005

Table 3

Suppose that x = 3 is observed. A Frequentist statistical test of h0 will

not reject h0 at the 5% level, because the probability of seeing what was

seen or something more extreme — the sum of the entries in the first row

to the right of the column x = 2 — is greater than 5%.63 But h′0 will be

63. This is a rare case in which the choice of the test statistic T is not a problem, because
in a simple unidimensional example such as this we can set T(x) = x.
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rejected, because the sum of the entries to the right of the column x = 2

in the second row is less than 5%. h′0 is rejected because it fails to predict

the results which have not occurred (x = 3 and x = 4). h0, which predicts

those results more strongly than h0 does, escapes rejection. The contrast

between h0 and h′0 makes it clear that, just as Jeffreys said, a hypothesis (h0)

has been rejected because it failed to predict (assigned low probability to)

results which did not occur.

Jeffreys’s (correct) conclusion from his argument is to endorse the

likelihood principle, although without naming it:

Yates . . . recommends, in testing whether a small frequency nr is
consistent with expectation, that χ2 [T(x)] should be calculated
as if this frequencywas nr+ 1

2 instead of nr , and therebymakes the
actual value contribute largely to P. This is also recommended
by Fisher . . .. It only remains for them to agree that nothing but
the actual value is relevant.

(Jeffreys 1961, p. 385 footnote)

The upshot of this argument is that P does not help us to reach the right
conclusions about H .

Can this conclusion be over-ruled by some justification for the use of

P in inference? So far I have given such a justification only implicitly. The
best explicit justification I can make for P is as follows. We want to avoid
believing h0 unless h0 is true. So we should not believe h0 unless we have

good reason; and we might reason that if P is small then it seems to be
telling us that what we have observed is unlikely, according to h0. Unlikely

things mostly do not happen; but it is only according to h0 that what we

have observed is unlikely (for all that P tells us); so the unlikeliness of our
observation under h0 is good reason to reject h0.
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Unfortunately, this reasoning is fallacious. It makes no difference

whether T(xa) is unlikely on h0 unless it is more likely on some other

hypothesis in H . It is true that for all P tells us observing T(xa) is unlikely
according to h0 and therefore, plausibly, more likely according to other

hypotheses; but remember that P was constructed precisely to exclude
consideration of other hypotheses. In order to see whether what we have

observed is really more likely according to other hypotheses, we have to

examine the table by columns . . . which is incompatible with Frequentism,

and, in any case, is something P manifestly does not do.
An informal diagnosis of how we have got into this mess is that the

unlikely events principle, although plausible, is false. Recall:

The unlikely events principle:

A hypothesis which assigns a low probabilities to an event is

disconfirmed by the occurrence of that event to the extent that,

if a hypothesis says that an event is unlikely, and yet that event

occurs, it is reasonable to conclude, at least tentatively, that the

hypothesis is probably false.

In cases in which the outcome is unlikely not only according to the hypoth-

esis under consideration but also according to all competing hypotheses,

we should not follow this rule. And, indeed, outside statistical inference we

do not follow this rule in such cases. Unlikely events happen all the time,

and very rarely do they or should they cause us to reject any hypotheses.

To take a coin-tossing example again, consider the hypothesis that a coin

is fair. Now toss it twenty times. Whatever the outcome is, it is unlikely

according to that hypothesis, as we have already seen. Even an outcome
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with an equal number of heads and tails — one that intuitively seems to fit

the hypothesis best— is extremely unlikely. What should cause us to reject

the hypothesis is consideration of the probability of the outcome according

to the hypothesis we have in mind in comparison with other hypotheses.

But this cannot be calculated by an analysis of probability tables by rows.

In summary, our candidate procedure for analysing probability tables

by rows suffers from the following flaws:

• The choice of h0 is generally ad hoc.

• The choice ofT is generally ad hoc, and invariant under even bijective

transformations of variables.

• A hypothesis may be rejected for correctly assigning a low probability

to T(x).

• The problem of multiplicity means that the calculation of a P-value

does not have an inherent error rate: its error rate depends on what

other analyses were conducted at the same time.

• The use of a P-value to reject or fail to reject h0 makes no sense unless

it contains an illicit implicit appeal to other hypotheses.

These are criticisms of the use of a small value of P to reject h0. I promised
earlier to return to the subject of howwe should use a large value ofP. I can
now clear up that issue very quickly. I hope it is obvious by now that any

use of a large value of P either to accept or reject h0 is going to suffer from
exactly the same problems as our candidate use of a small value of P. The
remaining possibility is that a large value of P should cause us to refrain
from saying anything about h0. That possibility is far from innocuous. It
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would have us refrain from saying anything about observing a quiet child

if we were taking h0 to be PTSD (see Table 1). That would not be wise.

Almost all scientific statistical inferences depend on P-values in one

way or another. Using P-values in the raw, as it were, is currently out

of fashion among statisticians, for an excellent reason, namely that P-

values do not give enough information about the data for most scientific

purposes. This criticism is right, but it is not my main criticism of P-

values. My main criticism is not that they give too little information but

that they give misleading information. The current fashion for disliking

P-values does not take any of my points into account. The new orthodoxy

says that although P-values should not be quoted in the results sections

of scientific papers they should be used to calculate confidence intervals.

From the point of view of my criticisms of Frequentist inference the new

fashion is no better than the old. In principle we can see this simply

by noting that the lower end-point of a symmetric confidence interval is

simply the value of xwhich would give some fixed P-value (typically 2. 5%).

That is enough to ensure that the criticisms I have already given apply to

confidence intervals. But rather than merely relying on that relationship

between confidence intervals and P-values it will be more illuminating,

and more fun, to explore confidence intervals in their own right.

3. CONFIDENCE INTERVALS

At the beginning of this chapter, I promised to define both of the commonly

used types of Frequentist inference procedere, P-values and confidence

intervals. To spare the reader’s patience, I will not motivate confidence

intervals in the detailed way in which I motivated P-values. Instead, I will
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start with the definition of confidence intervals and move straight on to

criticisms of their use in statistical inference.

“Confidence interval” sounds as if it denotes an interval in which an

unknown parameter is likely to lie; but it does not. Recall its definition

from chapter 4:

If there exist functions of x, T↓and T ↑, both statistically inde-
pendent of θ, such that

(∀θ) p(T↓ (x) ≤ θ ≤ T ↑ (x)) = 1− α

then the interval [T↓ (xa),T ↑ (xa)] is a 1−α confidence interval
for θ.

(adapted from Kendall & Stuart 1967, volume II, p. 99)

1−α is known as the coverage probability or the confidence level of the

confidence interval.64

The definition given above (which is the standard definition) hides the

fact thatT↓andT ↑are functions not only of xa (the observed data) but also

of H (which in this context is, effectively, the set of probabilities that the

various possible values of θ assign to the elements of X). The apparently

innocuous statement that (∀θ) p(T↓ (x) ≤ θ ≤ T ↑ (x)) = 1− α is strongly

dependent on the probabilities that non-actual values of θ assign to non-

actual values ofX . This is why the use of confidence intervals for inference

about θ is a Frequentist inference procedure. And it is clear from the

definition of a confidence interval, and from the formulae used to calculate

confidence intervals, and from applied statisticians’ actual practice, that

64. The coverage probability could just as well be denoted α instead of 1 − α, but the
tradition prefers that the letter α should be reserved for an error rate, while 1 − α is
something more like a success rate.
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confidence intervals must be calculated using the whole of the sample

space X .

To bring out the dependence of α on the whole of X , it would be

better to write the defining equation as:

(∀θ) p(T↓ (x,X ,H ) ≤ θ ≤ T ↑ (x,X ,H )) = 1− α.

ARE CONFIDENCE INTERVALS INFORMATIVE ABOUT H?

Typically, functions T↓ and T ↑ are found such that (∀θ) p(T↓ (x) ≤ θ ≤

T ↑ (x)) = 95%. Such functions can be calculated from P-values. (In most

cases, the endpoints of a 95% confidence interval are simply the values of

θ which give the observed data a P-value of 2½%.) Frequentists claim,

implicitly or explicitly, that this probability gives us a basis for inference

about θ. Usually the claim is made explicitly, and often the inferential

usefulness is made part of the definition. To take an example from an

influential health policy document:

Confidence interval: the computed interval with a given prob-
ability e.g. 95%, that the true value of a variable such as a mean,
proportion or rate is contained within the interval.

(Liddle et al. 1996, p. 39)65

65. Liddle et al. are, of course, implying that probability is relevant to health policy, and
hence are making an epistemic claim, even though they calculate probability in Neyman’s way.

Neyman himself, with his avowedly non-epistemic notion of probability, did not claim
that confidence intervals could be used for epistemic inference, and yet both he and his
followers did so on a daily basis. This apparent contradiction is explained by the fashionability
of a behaviouristic form of falsificationism at the time when he developed his theory (in the
1930s). This made it seem reasonable to say that confidence intervals give us a basis for action
without having any epistemic consequences at all. Such a view is no longer popular.

The question ofwho claims that confidence intervals are relevant to epistemic inferences
and who does not is contested, but the contest is unimportant for my purposes. I will attack
the claim non ad hominem. This will be an important building block for my attack on
Frequentist inference procedures. Insofar as my opponents are divided about whether their
procedures really are inference procedures, so much the better for my position, which is not
that Frequentist methods have no place but that they have no place in inferences from xa to
H .
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The claim that confidence intervals are relevant to inferences from xa to

H is questionable because it assigns a probability on the basis of a single

multiset of observations without taking into account what else is known

about θ. This is a point continually stressed byBayesians, the only people to

date who have a comprehensive methodology for taking such information

into account . . . which is not to say that their methodology is right (this

thesis does not claim to judge that issue) but only that if ulterior knowledge

about θ is not taken into account in any way then we have no right to make

such probability statements. It is an obvious and widely acknowledged

fact that probability statements are nonsensical, epistemically speaking, if

known information is ignored.66

More specifically, the claim that confidence intervals are relevant to

inferences from xa to H is false because once we know xa (which we must

know in order to calculate a confidence interval) we typically know for sure

that the probability that θ is in the interval is not 1− α.

In a moment I will give an example (involving bonobos) in which an

interval C is a bona fide 75% confidence interval calculated in a perfectly

standard (and optimal) way but in which we know for sure that C contains

θ. In this example, the claim that statement that p(T↓ (x,X ,H ) ≤ θ ≤ T ↑

(x,X ,H )) = 75% is true if interpreted according to its definition, but only

because it is part of the definition of that probability that we ignore some relevant

evidence (as discussed in chapter 4). If interpreted in accordance with

the principle of total evidence (contrary to its definition), as a statement

66. Thus, for example, the probability that I am a rock, given that I am an Earthbound
physical object but ignoring what else we know about me, is rather high; but to conclude
from that that I am a rock would be irrational.

Or, the probability that the Senator for Pennsylvania is the Democrat Joe Hoeffel,
ignoring the fact that I know that the Senator is a Democrat, is maybe a half; but it makes no
sense to state that probability when I know for sure that the Senator is a Democrat.
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about the probability of θ holding such-and-such a value in the light of the

available evidence, it is no longer true.

This argument against the use of confidence intervals for purposes of

statistical inference is widely admitted, although its importance is widely

disputed. Thus, for example, Kendall and Stuart, in what is probably the

most authoritative single work on the technicalities of themajor twentieth-

century theories of statistics, agree that we cannot say that there is a

probability of (1 − α) that θ lies in its (1 − α) confidence interval. But

they go on to dispute the importance which I attach to this fact, on the

following grounds:

Note, in the first place, that we cannot assert that the probability
is 1−α . . . [but] If we assert that [θ lies in its confidence interval] in
each case presented for decision, we shall be right in a proportion
1 − α of the cases in the long run. . . . This idea is basic to the
theory of confidence intervals which we proceed to develop, and
the reader should satisfy himself that he has grasped it.

(Kendall & Stuart 1967, volume II, p. 99)

If this is intended to be a rationale for the use of confidence intervals (and I

believe it is), it must be read as saying that making a probability statement

that is known to be wrong is OK provided we bear in mind that if we

used the same inference procedure it would turn out correct in a known

proportion of other cases!
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A CLEARLY USELESS CONFIDENCE INTERVAL

I will now back my abstract arguments up with an example adapted from

(Berger & Wolpert 1988).

I am studying bonobo chimpanzees in the wild. Researchers further

up the river have told me that three new bonobos have moved into my

study area. Two of them, Adam and Colin, are indistinguishable apart

from size; the third, Bertie, is unusually pale and exactly intermediate in

size betwen Adam and Colin. Because my contacts saw them only their

heads and upper bodies above the ground cover, they cannot tell me the

actual heights of any of them, but they can tell me that Colin is two metres

taller than Adam. My task is to estimate xB , the height of the unusual one,

Bertie.

Figure 15: Bertie the bonobo

What makes this a statistical problem is that the bonobos, being new to

my area, are likely to move off again if I disturb them. I estimate that I can

only afford to get close to one of them at a time, and only twice during my

study period; so those two observations will become mymerriment. When

I observe an ape from close up, I can peer over the ground cover to see his

exact size, so if I could observe Bertie this way there would be no problem.

However, Bertie is particularly shy, so the chance of observing him from
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close up is negligible. All I can get is two height observations of the others:

two of Adam, two of Colin, or one of each. Call these observations x1 and

x2.

A “shortest” (see chapter 4) 75% confidence interval for xB is:

C = (x1 − 1, x1 − 1) if x1 = x2

= ( x1+x22 , x1+x22 ) if x1 6= x2.67

I am comforted to find that with only two observations I can estimate

Bertie’s height with 75% confidence.

What makes this a paradox is that it makes no sense at all for me to

plan to give the interval C as my estimate of Bertie’s height, or indeed to

plan to use it for any other inferential purpose.

Suppose x1 = x2 (I have observed the same ape twice). Then should

I give C as my 75% confidence interval? No, because I know that there

is only a 50% chance, not a 75% chance, that C contains Bertie’s height.

That’s bad enough. Now suppose x1 6= x2. Should I give C as my 75%

confidence interval? Hardly, because this time I’m 100% sure that Bertie’s

height is x1+x22 . So, no matter what I observe, it makes no sense to report

75% confidence in my 75% confidence interval.

The calculation above which seemed so pleasant for a moment has

turned out to be completely useless . . .well, almost completely useless. I

might have wanted to know in advance what my chances were of finding

67. To verify that this is a 75% confidence interval, imagine that the experiment is repeated
a large number of times. In half of these repetitions I will observe both Adam and Colin,
giving me an accurate reading of xB ; in the other half, I will observe Adam or Colin, make
a wild guess of which one I’m observing, and estimate Bertie’s height correctly half of those
times, or one quarter of all times. So in all I will get Bertie’s height right 75% of the time.
The other quarter of the time I will get it wildly wrong.

If we change my information slightly, so that for example I do not know exactly
how much taller Colin is than Adam, it should be clear that the coverage probability of
my confidence interval is still roughly 75%. Although such a change would complicate the
calculation, the required adjustment would be small. So not too much hangs on the details of
my rather contrived example.
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out Bertie’s height. For that, the same calculation would have been right,

but the correct interpretation of it in that case would certainly not be

as a confidence interval. Hacking (1965) makes much of the occasional

usefulness of such calculations in quality control in factories; Backe (1999)

makes a similar point, while Seidenfeld says:

the N-P [Neyman-Pearson] theory is plausible as a theory of
inference before seeing the actual evidence (on the ‘forward’ look),
but fails as a theory of inference after seeing the data (on the
‘backward’ look).

(Seidenfeld 1979, p. 15)

This view is compatible with everything I claim in this thesis. I do not

argue either for or against it. It certainly does often turn out that the

mathematics used to construct confidence intervals is useful in designing

experiments. But note not only that confidence intervals are not useful in

analysing experiments, if my example and the likelihood principle are to be

believed, but note also that this fact is clearly known in advance. I know

right now that my observations of Adam and Colin will not — cannot ,

under any circumstances— lead me to have 75% confidence in the interval

C.

This problem with confidence intervals is so bad that people who

are aware of it use alternative terminology to designate non-Frequentist

estimates which look like confidence intervals but are non-paradoxical:

they call them either “interval estimates” (a term which is meant to be

neutral as to how the intervals are calculated) or “credible intervals” (a

term usually reserved for intervals calculated in a Bayesian way).
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Inference procedures which obey the likelihood principle are not sub-

ject to problems of this type, because they take into account the observed

data by making all the probabilities used in calculating the intervals fully

conditional on xa. In particular, it can be proved that Bayesian credible

intervals cannot suffer from nasty examples such as the bonobo example.

Bayesian credible intervals also have some advantages from the point

of view of Frequentist criteria (criteria based on long-run averages of

performance on hypothetical data). For example, Frequentist confidence

intervals, but not Bayesian credible intervals, are subject to the problem

of biased relevant subsets, a problem which bothers some Frequentist

theorists just as much as it bothers me.

BIASED RELEVANT SUBSETS

This section owes much to (Leslie 1998).

A biased relevant subset, B, is a subset of the sample space . . .
such that P(B) is strictly positive (for all θ), and within which, for
some positive value ε, either:
i) The [Frequentist] long run success rate for θ lying within
the confidence interval is greater than or equal to (1−α)+ε,
for all possible θ, or

ii) The [Frequentist] long run success rate for θ lying within
the confidence interval is less than or equal to (1− α)− ε,
for all possible θ.

Relevant biased subsets of form (i) are called positive relevant
biased subsets; those of form (ii) are called negative relevant
biased subsets.

(Leslie 1998, p. 48)68

68. Despite Leslie’s use of the variable ε, which mathematicians sometimes use to denote
a small quantity, the discrepancy can be very large. In some simple problems it is 30%
(Robinson 1975), and it can be even larger.
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If the guaranteed coverage probability of a confidence interval is 1 − α,

how can the long-run success rate be 1−α±ε? The answer is that it is only

within B that it is 1−α±ε. The overall success rate is still 1−α. But this is

no cause for comfort. Consider first that when it is time to make inferences

about θ based on xa we know whether the result (xa) is in the subset B or not.

This on its own has been enough to cause the Frequentist community to

accept the necessity of taking biased relevant subsets into account, at least

in some cases, even though to do so breaks the fundamental principles of

Frequentist analysis by compromising overall long-run properties. Thus:

“Today it is widely accepted by adherents of confidence interval theory that

they should perform their analyses conditional on the value of ancillary

statistics” (Robinson 1975, p. 155).

Frequentists can achieve some relief from this problem by condition-

ing on ancillary statistics. Recall from chapter 5 that an ancillary statistic

is a function T such that p(T|θ) is independent of θ. Such an ancillary is a

function T of xa such that observing the value of T tells us nothing about

θ. Conditioning only on ancillary statistics gives some but, as we will see,

not all of the advantages of conditioning on xa.69

Moreover, and far worse from the point of view of any statements

made before xa has been observed, it is sometimes the case that the whole

of the set of possible observations is made up of biased relevant subsets.

Such is the case in the bonobo example above. Sometimes such examples

cannot be adjusted in the usual Frequentist way (by performing analyses

conditional on ancillary statistics), as illustrated by Robinson, who has

69. See (Leslie 1998) for the history of the conversion of the Frequentist orthodoxy from
refusing to condition on any function of xa to conditioning on ancillary statistics, and for
further discussion of the examples in this section.
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constructed a confidence interval with a bona fide overall coverage proba-

bility of 50% with the property that every possible observation is in one of

two biased relevant subsets, one with coverage less than or equal to 20%

and one with coverage greater than or equal to 80%, so that no matter

what is observed the Frequentist coverage probability of 50% is wildly

misleading. In Robinson’s example, unlike the bonobo example, the biased

relevant subsets do not go away upon conditioning on any ancillary statis-

tic. They would go away on conditioning on xa, as the likelihood principle

recommends, but Frequentists cannot do that, since then they would be

failing to report the long-run characteristics of the procedure.70

The existence of biased relevant subsets (although not the name)

has been known since 1939, only a few years after the invention of the

confidence interval, when Welch came up with the following example.

Suppose we draw a sample of size n from a uniformly distributed population

with (unknown) population mean θ and spread 1:

! - ! ! ! + !

Figure 16

70. In fact Frequentists worthy of the name cannot condition on ancillary statistics either,
but they do it anyway and count it as merely a venial sin, whereas conditioning on xa would
be to go all the way with the likelihood principle and therefore would be a mortal sin.

219



Then the Neyman-Pearson 95% confidence interval for θ is

[max (min(x) + d , max(x)− ½) ,min (min(x), max(x) + d + ½)] ,

where 2dn − (2d − 1)n = 0. 95 if n < 1 − log2(0. 95) and 2dn = 0. 95

otherwise.

Welch did not analyse this example in detail (see (Leslie 1998) for some

notable omissions in Welch’s analysis), but he did note a disagreement

between Fisher’s non-Frequentist analysis of the case and Neyman and

Pearson’s Frequentist analysis. It turns out that the confidence interval

has the following properties:

• When max(x)−min(x) > d (as is bound to happen sometimes, of

course), the 95% confidence interval is guaranteed to contain θ.

• When max(x)−min(x) < 2d − 1, the 95% confidence interval cannot

contain θ (Leslie 1998, p. 38).

Wallace (1959) has shown that Bayesian credible intervals do not suffer

from the same problems as Frequentist confidence intervals, and in partic-

ular that Bayesian credible intervals cannot have biased relevant subsets

(unless they are based on an improper prior distribution — one which is

not a probability function). This should come as no surprise (and indeed

came as no surprise in 1959), since Bayesian credible intervals obey the

likelihood principle and hence condition on xa.

In chapter 15, I will show other ways in which Bayesian credible

intervals can (sometimes) be preferable to confidence intervals even from

some Frequentist points of view. The example in chapter 15 will be less

impressive than the examples in this chapter but arguably much more

important, because it is drawn directly from the actual practice of large
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pharmaceutical trials and has direct implications for how such trials should

be run in the future.

The problems discussed above suggest that confidence intervals are

invalid as bases for statistical inferences. In addition, confidence intervals

inherit all the ad-hockery of P-values, and add some of their own. Recall, for

example, mydiscussion in chapter 4 ofHowson andUrbach’s argument that

choosing to quote the shortest of the infinite number of valid confidence

intervals is ad hoc.

The lesson to be learned from my discussion of confidence intervals

is: good riddance to them. But the above problems of confidence intervals

(except for some of the ad hockery) are entirely attributable to the problems

of error rates in general. Since the end-points of symmetric confidence

intervals are P-values, for every paradox of P-values it is trivial (although

perhaps unenlightening) to generate a dual paradox of confidence inter-

vals, and vice versa. So, instead of further critiquing confidence intervals

separately from the task of critiquing other error rates, I will move on to

other issues.

4. IN WHATWAY IS FREQUENTISM OBJECTIVE?

Now that I have shown that Frequentist procedures have many ad hoc

elements, I need to ask whether the objectivity of Frequentism makes up for

its ad hocness.

First, note that any theory can be made objective (in one sense) by

revising it so that the theory (rather than any particular application of

the theory) defines which choices are to be made whenever an arbitrary

decision is called for. This is a completely general point. For example, the
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theory of Roschach tests, which is often criticised for being subjective, can

be made objective by eliminating any subjectivity on the part of the psychi-

atrist analysing the pictures; this can be done very easily, by classifying the

possible pictures in any determinate way and providing, within the revised

theory, determinate rules which the psychiatrist must follow in reaching

conclusions. As it is with Freudian analysis, so it is with statistical analysis.

Any theory of statistical inference can be made objective by revising it so

that what were subjective choices become determinate. A slight modifica-

tion of Jeffreys’s theory, for example, can be seen as an objectification of

Subjective Bayesianism: the decisions about prior probability distributions

which a Subjective Bayesian makes subjectively a neo-Jeffreys Bayesian can

make by using one of the priors which Jeffreys specifies (see chapter 3).71

Of course there is something wrong with making a subjective theory

objective by modifying it in an arbitrary way. I imagine everyone agrees

that there is no virtue in doing so. Or rather, there is no epistemic virtue.

There is a very great pragmatic virtue in doing so when otherwise the

choices allowed by the subjective theory will be used in a pernicious way.

For example, one might argue that a legal system (or an electoral system)

in which arbitrary choices are enforced by a constitution is better than

one in which arbitrary choices are made by individuals, on the hoof. This

point is under-emphasised by those Bayesians who denigrate Frequentist

theory as being just as subjective as Bayesian theory (Howson & Urbach

71. This is not what Jeffreys’s theory actually is: his theory is meant to prescribe prior
probabilities only in cases in which the agent doing the analysis is actually ignorant about
the parameters in question. Also, it would be a misreading of history to think of Jeffreys
as attempting to make Subjective Bayesianism more objective, at least initially, since early
versions of his theory predate any statement of Subjective Bayesianism. But we need not
worry about Jeffreys’s actual theory for the moment. All I am doing is borrowing his
mathematics in order to devise a Bayesian theory which is completely objective in the sense
I am currently dealing with — the sense of not allowing any subjectivity in its application.
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1993, p. 12 & passim). In this one important respect Frequentist theories

are more objective than Subjective Bayesianism.72

A disclaimer: I am not pronouncing onwhether the type of objectivity

obtained in this way really ought to count as objectivity. I have no theory of

what ought to count as objectivity. I do not need one for present purposes;

what I am doing instead is discussing the value of something specific which

many people count as a type of objectivity.

Frequentist theories of statistical inference have exactly this type of

objectivity. Thus, they have an appearance of virtue which is real (as I

have argued above) but non-epistemic. Consequently, there is no more

reason to believe that the products of Frequentist statistical analysis are

right than there would be if the choice of significance level or the choice

of confidence interval were set by dice throws. There is more reason to

believe that they’re right than if they were set by malicious interested

parties; that is why I think they have some virtue. But that does not make

them epistemically defensible.

72. For example, by making the significance level required to reject a hypothesis always
5%, the form of Neyman’s theory which has become standard in biomedicine has stopped
experimenters from using the arbitrariness of that cut-off to reject any hypotheses they
happen not to like. Similarly, although Neyman’s theory of confidence intervals does not
adequately justify any particular choice of interval from among the infinite number with a
given coverage probability, the arbitrary rules which he and Pearson and their successors have
developed for choosing confidence intervals almost always prevent a statistician frommaking
a personal decision about which interval to quote. As a result, a drug company statistician
and a public health advocate will virtually always agree on the correct application of this
part of the theory; and this has the very beneficial effect of leaving them time to argue about
more important matters such as whether the drug company’s analysis is being interpreted
correctly, is being advertised in misleading and illegal ways, is being ignored in the company’s
Third World marketing policy, and so on.

So much for the political advantages of putting all the arbitrariness into the theory
rather than in the hands of the practitioners of the theory. There is clearly no epistemic
advantage to doing so; at least, not for an individual epistemic agent. A practitioner of a
theory cannot be said to have objective knowledge on the basis of arbitrary decisions made by
the inventors of the theory, any more than they could be said to have objective knowledge on
the basis of arbitrary decisions which they made themselves. This is why the idea of turning
a subjective theory into an objective theory merely by fixing all the arbitrary decisions in
advance is a straw man: nobody advocates it.
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The arbitrary basis of the objectivity of Frequentist procedures is

easily missed, especially since the vast majority of scientists learn the

principles of Frequentist inference from texts which concentrate on teach-

ing them how to operate computer algorithms embodying Frequentist

methodology. Sadly, the programs in question make it easy (although

not absolutely compulsory) to run modules which have all the arbitrary

components of the theory hard-coded into them, and the texts take full

advantage of this fact. Consequently, it is very hard for a scientist or an

applied statistician to find out what is arbitrary in the theory or even that

the theory has any arbitrary components at all (with the sole exception of

the 5% cut-off, which is obviously arbitrary).

Frequentist theories of statistical inference also have other types of

objectivity: they study only intersubjectively verifiable phenomena, they

use mathematics rather than numerology, and so on. But these types of

objectivity are shared by all the theories studied in this thesis.

I conclude that although Frequentist theories are more objective than

their main contemporary rivals, the Subjective Bayesian theories, their

objectivity is of a sort which confers no epistemic virtue.

5. FUNDAMENTAL PROBLEMS OF FREQUENTISM

In the remainder of this chapter, I will give two very general, related criti-

cisms of Frequentist methodswhich, I claim, represent Frequentism’smost

fundamental problems. The first is that Frequentism methods are over-

reliant on probabilities assigned to non-actual observations; the second is

that Frequntist methods are under-reliant on the information carried by

actual observations.
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COUNTERFACTUALS

As I foreshadowed earlier, the calculation of a Frequentist error rate is

strongly dependent on the probabilities that the non-actual values of θ as-

sign to non-actual values of x. (This follows immediately from the definition

of a confidence interval, for example.)

That this is deeply problematic has been noted many times (mainly in

the literature which contrasts Frequentism with Bayesianism), and I can

do no better by way of an example than to quote and analyse the following

famous passage by Pratt.

Pratt’s example

An engineer draws a random sample of electron tubes and mea-
sures the plate voltages under certain conditions with a very
accurate voltmeter, accurate enough so that measurement er-
ror is negligible compared with the variability of the tubes. A
statistician examines the measurements, which look normally
distributed and vary from 75 to 99 volts with a mean of 87 and a
standard deviation of 4. He makes the ordinary analysis, giving
a confidence interval for the true mean.

Later he visits the engineer’s laboratory, and notices that
the voltmeter used reads only as far as 100, so the population
appears to be “censored”. This necessitates a new analysis, if that
statistician is orthodox.

(Pratt 1962, pp. 314–315)

Censoring is the real or hypothetical lack of potential observations — i.e.,

observations which might have occurred but didn’t; in this case those over

100.
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The reason that censoring necessitates a new analysis is that the

statistician is performing a Frequentist statistical procedure and therefore

needs to be able to report the proportion of an imaginary series of experi-

ments whose results are in some error set— in this case, whose confidence

intervals fail to contain the true value of the average plate voltage of a

population of tubes from which the sample is drawn. In the merriment

actually performed (which the Frequentist statistician must treat as an ex-

periment), none of the tubes had a plate voltage above 99. We can be sure

of this, because the voltmeter reads accurately up to 100. But in the imag-

inary series of experiments which the Frequentist uses in his calculations

some of the tubes will have plate voltages over 100.73

Some of these unobserved (and very likely non-existent) tubes with

plate voltages over 100 would lead to different results in some of the imag-

inary series of experiments which the Frequentist uses in his calculations

(or rather which his computer program uses— I will examine this distinc-

tion shortly), since the voltmeter would — hypothetically — incorrectly

assign those tubes a value of 100, and this error would have to be corrected

(as far as possible) in the analysis. Frequentist statistical methods embody

corrections for such errors: in fact, the mathematics used to calculate Fre-

quentist results takes into account the entire probability distribution on

possible outcomes of the experiment in a way which guarantees automatic

correction for censoring errors provided the censoring is fully described in

73. Note that this is so even if none of the tubes which the engineer actually owns has
a plate voltage over 100, and even if none of the tubes which have ever existed or will
ever exist have plate voltages over 100! It is guaranteed by the assumption that the plate
voltages vary according to a statistical distribution with long tails (in this case the “normal”
or Gaussian distributon, but any similar distribution would have the same effect). A non-
Frequentist statistician would no doubt make the same assumption about the distribution of
plate voltages, but since she does not have to imagine a non-actual series of experiments the
assumption is innocuous for her.
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the statistician’s mathematical model. This is why the Frequentist statis-

tician does a new analysis when he finds out that the engineer’s voltmeter

only reads up to 100.74

One problem resulting from the counterfactual nature of these exam-

ples is that evaluating the counterfactuals involved may bring in theories

which are quite extraneous to the problem at hand. For example, to decide

whether the voltmeter would or would not read above a certain number

might require an understanding of how the circuitry near the dial behaves

at relatively high temperatures, which in turn might require a theory of

the behaviour of doped semiconductors at high temperatures, which is a

difficult problem. But that theory seems to be irrelevant to the case at hand,

since the voltages applied never exceed 99 and hence the circuitry never

gets hot. In other words, the Frequentist statistician’s analysis depends

on inventing a sufficiently complete context for hypothetical eventualities

to enable him to evaluate his counterfactuals. Moreover, this context often

has to include factors — psychological, social and even political — which

go beyond what one normally thinks of statisticians as taking into account.

An alternative way of stating this problem with Frequentist counter-

factuals is that whereas all the statistical inference procedures discussed in

this thesis require the statistician to establish a statistical model linking hy-

potheses to the actual observations, only Frequentist inference procedures

require the statistician tomodel thewhole experiment withinwhich the ob-

servations are made. Where the non-Frequentist needs only a merriment,

the Frequentist needs a fully-modelled experiment.

74. One can imagine weirder illustrations of this problem, such as a superstitious experi-
menter who never reports a result of 13. If this experimenter’s observations are, for example,
3, 9, 18 and 20, then his superstitions never come into play, and a non-Frequentist statisti-
cian would have no need to take them into account or even to find out about them. But a
Frequentist statistician would.
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Pratt illustrates this problem nicely in the continuation of his example,

in which the statistician is forced to model the experimental situation in

much more detail than seems warranted:

However, the engineer says he has another meter, equally accu-
rate and reading up to 1000 volts, which he would have used if
any voltage had been over 100. This is a relief to the ortho-
dox statistician, because it means the population was effectively
uncensored after all.

Phew.

But the next day the engineer telephones and says, “I just dis-
covered my high-range voltmeter was not working the day I did
the experiment you analyzed for me.” The statistician ascertains
that the engineer should not have held up the experiment until
his meter was fixed, and informs him that a new analysis will
be required. The engineer is astounded. He says, “But the ex-
periment turned out just the same as if the high-range meter
had been working. I obtained the precise voltages of my sam-
ple anyway, so I learned exactly what I would have learned if
the high-range meter had been available. Next you’ll be asking
about my oscilloscope.”

(Pratt 1962, p. 315)

And the engineer is right: if there is a non-negligible chance that the

oscilloscope is broken, the statistician does have to ask about it. Otherwise,

the statistician would not be correctly analysing his imaginary series of

experiments.

It is important to note that the analysis of this imaginary series of

experiments is not a choice which the Frequentist statistician can take or

leave. It is what he does every time, in order to calculate his error rates

228



(or rather, what his computer program does for him, whether he realises it

or not, based on the model he supplies). This is what Howson and Urbach

call “the essential weakness of the classical [Frequentist] principle that an

estimate must be evaluated relative to the method by which it was derived”

(Howson & Urbach 1993, p. 233).

Berger and Wolpert extend Pratt’s example (although without men-

tioning Pratt) to make it clear that the facts which determine a Frequentist

calculation may be sociological or political:

suppose [a scientist conducts an experiment with 200 observa-
tions in which] significance has been [narrowly] obtained. . . .
the statistician asks what the scientist would have done had the
results not been significant. Suppose the scientist says, “If my
grant renewal were to be approved, I would then take another
100 observations; if the grant renewal were to be rejected, I
would have no more funds and would have to stop the experi-
ment in any case.” The advice of the [Frequentist] statistician
must then be: “We cannot make a conclusion until we find the
outcome of your grant renewal; if it is not renewed, you can
claim significant evidence against H0 [because there will be no
need to adjust your existing results], while if it is renewed you
cannot claim significance [as explained below] and must take an-
other 100 observations.” The up-to-now honest scientist has
had enough, and he sends in a request to have the grant renewal
denied[.]

(Berger & Wolpert 1988, p. 74.2, and Berry 1988, p. 31–32:
exactly the same words are used in both papers!)

Again, as in Pratt’s example, the statistician is right to argue the way he

does. Frequentist theory demands an overall error rate of 5% (or whatever)

for hypothetical repetitions of the experiment, and this error rate can only
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be calculated by taking into account what the scientist would have done

had his results been different. The necessity for this calculation (within

Frequentist theory) is the problem of multiplicity described earlier in this

chapter. This calculation is made by applying a Bonferroni correction to

each part of the experiment: in other words, once it is known how many

observations the scientist is going to make in the future, the Bonferroni

correction can be applied to his existing observational results, without

waiting to see what the future results are. If the Bonferroni correction is

large enough (which it will be if the number of future observations is large

enough, relative to the size and statistical significance of the scientist’s

existing results), the observed results which, on their own, would be

judged significant, will become non-significant.75

The scientist’s grant application might be one he would not even

submit unless, counterfactually, his first experiment was non-significant.

When we once start using such counterfactual considerations, we ought

to take into account all relevant counterfactuals which have non-negligible

probability. One could argue that if the scientist’s first experiment fails

there is a small but non-negligible probability that he will apply, and be

funded, to perform any number of experiments without bound — enough

experiments, that is, to call for a Bonferroni correction large enough to

turn the actual significant result into a non-significant result. So Berger

75. This example, as Berger and Wolpert state it, depends on the initial results being only
barely significant, so that the Bonferroni correction (for multiplicity) for the hypothetical
100 additional observations changes the P-value by enough to make the results become non-
significant; but note that this is the case whatever the criterion for significance is (provided
only that it is Frequentist; if it is not Frequentist then no Bonferroni correction is needed).
And of course the example can be made to apply to cases in which the experiment is as highly
significant as you like, by increasing the number of additional observations which the scientist
might be funded to perform.
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and Wolpert’s example is relevant to every case of Frequentist statistical

inference in which such probabilities are non-negligible.

It may seem implausible that Frequentist statisticians behave as Pratt,

Berger and Wolpert claim, so I give a real example of how Frequentist

statisticians take into account the context needed to evaluate counterfac-

tuals in chapter 15.

Is it problematic to consider exprimenters’ intentions?

Mayo (1996, p. 349) claims that Frequentists have no problem with exper-

imenters’ intentions: “the error [Frequentist] statistician has a perfectly

nonpsychologistic way of taking account of the impact of . . . experimental

plans. The impact is on the error probabilities (operating characteristics)

of a procedure.” There is no problem, Mayo implies, because that impact is

objective. But this is wrong. Certainly the error probabilities are objective,

given the “procedure”. It is the “procedure” which is not objective. In the

“procedure” Mayo includes not just what the experimenter does but all of

the things the experimenter might have done had the results turned out

differently — which leads straight to Pratt’s problem, which remains as

“psychologistic” as ever.

Mayo also has a tu quoque argument, claiming that every method

of statistical inference, Frequentist or not, takes into account subjective

intentions, since

Any and all aspects of what goes into specifying an experiment
could be said to reflect intentions—sample size, space of hy-
potheses, prediction to test, and so on[.]

(Mayo 1996, p. 347)
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Mayo’s example of sample size misses the point dramatically: the sample

size is decidedly not just in the head of the experimenter, but is objectively

available to everyone. The sample space and prediction to test are more

arguably subjective (although in fact the prediction to test does not figure

anywhere in my positive arguments for the likelihood principle — likeli-

hood advocates rarely test hypotheses, preferring to estimate parameters

instead), but Mayo’s point still fails to go through for at least two reasons.

Firstly, even if there were a tu quoque argument it would not give us any

reason to add more subjectivity to the analysis in the form of propositions

about the hypothetical behaviour of broken voltmeters and oscilloscopes.

Secondly, and more importantly, no matter how subjective the hypothesis

space and prediction to test are, they are available to the analyst , to the

agent who is making conclusions. In extreme contrast, the point of Pratt’s

problem is that the hypothetical behaviour of broken equipment is known

only by the experimenter, if it is known by anyone at all; and if there is more

than one subjective view from more than one experimenter, the Frequen-

tist analyst has no way — not even a subjective way — to decide how to

interpret the results.

This contrast between experimenter and analyst becomes particularly

clear if there is more than one experimenter and more than one analyst, all

of whom have different counterfactual beliefs about the broken equipment.

It makes some sort of sense for the analysts to disagree — after all, they

are doxastic agents with different beliefs. But the experimenters enter into

the picture not as doxastic agents but as instrumental agents: they set up
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the equipment, but there is no reason why their beliefs ought to affect the

analyst.76

Nor should the analyst be perturbed if the results came about as non-

experimental observations (as they do in observational astronomy). A

likelihood analyst can cope with non-experimental observations without

trouble, while a Frequentist cannot use them at all (in principle; of course

this issue is fudged by actual Frequentists by using imaginary experiments,

as described under Neyman’s theory in chapter 4).

Mayo notes the epistemic force of mere observations. She sees it as a

drawback of the Bayesian theory that “it permits [us] to draw conclusions

from whatever data and whatever features one happens to notice” (Mayo

1996, p. 350, quoting Le Cam). But it seems to me that being able to

draw conclusions from whatever one happens to notice is an essential and

valuable part of the life of an epistemic agent.

The above discussion of counterfactuals gives us reason to be wary

of Frequentist methods used in the analysis of merriments. It is also

useful fodder for the distinction Hacking draws between what I am calling

inference and expectancy uses of error rates (as discussed at the beginning

of this chapter). When designing inference procedures, the Frequentist

needs to evaluate complex social counterfactuals while the non-Frequentist

does not. But when designing expectancy procedures — procedures for

describing the likely results of merriments not yet undertaken — both

the Frequentist and non-Frequentist statistician have to evaluate such

counterfactuals. Prior to the engineer measuring any tubes, for example,

both the Frequentist and non-Frequentist statistician would have to take

76. My point only makes sense if the experimenter and the analyst are different people, of
course. My argument is best read by imagining the experimenter to be a mere lab technician
or a machine.
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into account the brokenness of his low-range voltmeter and the availability

of his high-range voltmeter, because they would not know whether the

brokenness would affect his results or not. After the fact, they both

know that the brokenness has not affected the results, but the Frequentist

statistician ignores this knowledge while the non-Frequentist statistician

uses it to his advantage. SoHacking’s distinction is useful in distinguishing

between the cases in which the non-Frequentist statistician has a major

epistemic advantage over the Frequentist statistician and those in which

she doesn’t.

CONDITIONING ON NEW INFORMATION

The following paradox adapted from (Cox 1958) will tell us something

about the root causes of the problems I have been discussing.

Suppose that we are doing an experiment to test a hypothesis h0 and

that we decide — unwisely — to go along wtith the Frequentist idea that

we should imagine repetitions of the experiment and make sure that at

most 5% of them give the wrong answer, on the assumption that h0 is true

(where “wrong answer” is defined in the rather ad hoc way it was for P).
An almost realistic thought experiment which sheds light on our options

involves sending blood to one of two pathology labs according to which of

the labs sends the next pick-up courier, or according to the toss of a coin.

One laboratory is known to send back an estimated haemoglobin count

with a large amount of random error; the other lab always sends back a

count that’s almost exactly correct. To achieve an overall 5% error rate as

defined above we need to take into account both error rates. So if the blood
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actually went to the accurate laboratory, we need to increase the error rate

on the grounds that it could have gone to the inaccurate one!

This is unsatisfactory, and of course it is not what any practising

statistician would actually do. What she would actually do is take into ac-

count only the characteristics of the laboratory the blood actually went to.

(Recall from chapter 1 that this process of taking into account information

which was not available at the time the experiment was designed is called

conditioning.) Cox himself, in his (1958), came to the conclusion that we

should perform a conditional calculation (i.e., take into account only the

characteristics of the laboratory the blood actually went to) in this partic-

ular case. He did not have available to him the proof of chapter 13 which

shows (on very mild assumptions) that this case generalises to practically

all statistical analyses. Cox — and all non-Bayesian statisticians at the

time — held that one should condition only under special circumstances

but was unable to work out exactly what those circumstances were. His

example was therefore seen as a paradox.

As discussed above, Frequentist methods do sometimes condition on

new information. However, there is not — and cannot be— a general Fre-

quentist method for deciding which new information to condition on. One

way of seeing this is to take seriously Neyman’s theory in which probabil-

ities are based on the reference class and are therefore fixed (see chapter

4). Conditioning would necessarily change these probabilities. Thus, there

is no principled theory of conditioning available to followers of Neyman.

We can, however, imagine a new, anti-Neyman theory which conditions
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on available information while retaining other aspects of Neyman’s Fre-

quentism.77 But all such efforts are doomed to failure. I will show this in

chapter 13, by showing that the necessity of conditioning in Cox’s example,

combined with a very plausible axiom of sufficiency, is enough to prove

rigorously that one should follow the likelihood principle, which in turn

entails that one should always condition on all available data.

I will demonstrate that all Frequentist theories must fail in this way

by proving the likelihood principle:

The likelihood principle

Under certain conditions outlined in chapter 2 and stated
fully in chapter 8, inferences from observations to hypothe-
ses should not depend on the probabilities of observations
which have not occurred, except for the trivial constraint that
these probabilities place on the probability of the actual obser-
vation under the rule that the probabilities of exclusive events
cannot add up to more than 1.

In the light of the proof of the likelihood principle, Cox’s example seems

more like a reductio of the Frequentist theory of error rates than a true

paradox.

77. Wehave seen, for example, thatmanyFrequentist statisticians recommend conditioning
on ancillary statistics. This recommendation may sound general, but in fact it is not, because
ancillary statistics (a) often don’t exist, and (worse) (b) when they do exist are often not
unique, with different choices of ancillary statistic on which to condition leading to different
conclusions. There are other, arguably more sophisticated conditional Frequentist theories
(see, for example, Casella & Berger 1987), but none gives any justification for conditioning
on only part of the available information.
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6. CONCLUSION

I have shown that the use of Frequentist statistical procedures suffers from

the following problems. (I omit from this list ad-hockeries specific to

confidence intervals, as discussed above.)

• The choice of h0 is generally ad hoc.

• The choice ofT is generally ad hoc, and invariant under even bijective

transformations of variables.

• A hypothesis may be rejected for correctly assigning a low probability

to T(x).

• The problem of multiplicity means that Frequentist statistics do not

have inherent error rates, even though error rates are their raison

d’être.

• The use of error rates to reject or fail to reject a hypothesis makes no

sense unless it contains an illicit implicit appeal to other hypotheses.

It seems to me that every one of these problems affects the vast majority

of statistical analyses currently popular in the sciences, although to justify

this claim I would have to survey every science and that is, of course, well

beyond the scope of a single thesis.78

In addition to those problems, which are severe but which for all I

have shown might have partial solutions, the problems of experimenters’

intentions revealed by an analysis of the counterfactual nature of Frequen-

tist procedures, and Cox’s example, both show that there are fundamental

problems with Frequentist procedures. In chapter 13, I will show more

78. Some work towards part of such a survey is undertaken in (Grossman & Mackenzie
2005).
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formally that coherent inferential procedures must obey the likelihood

principle and thus cannot be Frequentist.

I conclude that we should not be looking to Frequentist theories

to provide the best theory of statistical inference, and thus that they do

not provide good alternatives to the likelihood principle, no matter how

popular they currently are with scientists.

In subsequent chapters, I will introduce and prove a carefully worded

version of the likelihood principle, using normative axioms which are ex-

tremely weak and plausible.
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— 8—
The Likelihood Principle

1. INTRODUCTION

This chapter describes the likelihood principle in detail. The main aim of

the chapter is to construct versions of the principles which will withstand

all the objections that have been levelled at earlier versions, without losing

the spirit of those earlier versions.

Here is a first, approximate definition of the likelihood principle, the

rough from which I will attempt to facet a shining gem:

In certain situations the only permissible contribution of a space
of observations X to inferences about a set of hypotheses {hi} is
via the likelihood function of the actual observation, p(xa|hi ).79

Or, in terms of tables:

79. Recall that the likelihood of a given observation is defined as the function from hypothe-
ses to numbers specified by the column in Table 1 representing that observation (and in an
analogous way in the infinite case). Thus, there is a separate likelihood function for each
possible observation. For example, the likelihood function for the symptom of vomiting in
Table 1 is the following function:

dehydration 7−→ 0. 03

PTSD 7−→ 0. 001

etc.
The identity conditions of likelihood functions are not the same as those of functions in
general. Two likelihood functions are considered the same iff they are proportional: i.e., iff
L1(h) = c × L2(h) for some c > 0.
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We should analyse Table 1, and any similar table, using only the
numbers in the single column corresponding to the observation
result which actually obtained in a given merriment.

The new, more precise version which I will develop in this chapter will

be very similar to the first group of definitions given below, especially to

Good’s (1983), Hill’s (1987) andBerger andWolpert’s (1988) versions. The

main difference will be a more comprehensive statement of the conditions

under which the principle is applicable.

I motivated the likelihood principle in chapter 7. We saw there that

Frequentist methods of statistical inference produce unacceptable results

because of a failure to make their probabilities conditional on known facts,

which suggested that statistical inference ought always to use probabilities

which are conditional on the fact that xa has been observed. This is,

roughly, the likelihood principle. I will make this idea precise, and discuss

its relationship to previously published versions of the likelihood principle.

THE IMPORTANCE OF THE LIKELIHOOD PRINCIPLE

The likelihood principle tells us something about what it means to be a

good theory of statistical inference. It does not (unfortunately) tell us what

the best theory of statistical inference is, but it rules out many theories

by showing them to contradict axioms which are all but indisputable (the

WSP andWCP axioms, presented in the next chapter). We need such prin-

ciples, because statistical theorists not only can’t agree on which statistical

procedures are best; they can’t agree even in outline on what it means for

one statistical procedure to be better than another. Now, clashes of epis-

temic values are the sort of problem that philosophers are usually good at
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identifying: noticing, for example, that evolutionary biologists don’t agree

on what it means for something to be a gene, and noticing the importance

of understanding this disagreement prior to trying to assess the divergent

theories of evolutionary genetics (Falk 1986, Griffiths & Neumann-Held

1998). We can perform the same job for statistical inference. The likelihood

principle principle will help us to do this.

I have already discussed the direct applicability of the likelihood prin-

ciple to philosophy of science in chapter 1. I showed there that prominent

philosophers such as Salmon accept principles which entail the likelihood

principle, while the very same philosophers exhort us to do science in a

way which contradicts the likelihood principle.

2. CLASSIFICATION

It is helpful to classify the versions of the likelihood principle in the litera-

ture into three groups:

I First, there is a group of fairly precise claims about when two dif-

ferent statistical measurements give the same evidence about a set of

hypotheses. I place these first in the list of versions of the likelihood

principle below, and I will have the most to say about them.

II Then there is a group of claims about the incoherence of averaging

over the sample space. These claims are saying that we should not

analyse Table 1 (or anything like it) by rows. The claims in this group

give us the best way of understanding the practical consequences of

the likelihood principle. In chapter 13 I will give an explicit argument

for considering the versions in group II to be logically equivalent to
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the versions in group I (modulo the vagueness inherent in some

versions).

III The third group contains stronger claims which hope to tell us not

only when the evidence from two different statistical measurements

is the same but, further, to exactly what extent a well defined observa-

tion supports any relevant hypothesis more than another observation

does.80

There is another way of classifying versions of the likelihood principle

which gives exactly the same groups as above — it is equivalent exten-

sionally to the previous classification, although perhaps it is not quite

equivalent intensionally as it is somewhat vaguer.

CLASSIFICATION 2

I STRONGVERSIONS: Inferences about θmaybe functions of p(xa|hθ)

but should not be functions of p(x|hθ) where x 6= xa.

II WEAKER VERSIONS: Inferences about θ must not be functions of

x where x 6= xa.

. . . where θ is an index on the set of hypotheses under consideration,

X is a space of possible observations, and xa is the actual observation,

as elaborated in chapter 2.

III ANOMALOUS VERSIONS: As group III above.

80. This third group is very much the odd one out, historically. It represents an enormous
increase in ambition over the other two groups, which are historically prior. Generally the
authors who work on principles in the third group do not use the term “likelihood principle”
for their rules; but three or four of them do, so it is worth saying expliticly that I will not be
discussing this third group in this chapter except to note its existence.
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In addition to these groups of definitions of the likelihood principle,

the literature on the foundations of statistics contains a group of princi-

ples recommending that we accept the hypothesis which has the highest

likelihood on the observed data — in other words, that we use maximum

likelihood estimation as defined in chapter 5. Versions of these principles

are sometimes called “the maximum likelihood principle”. It is important

to note that these principles are not corollaries of the likelihood principle,

although they do represent one way of applying the likelihood principle

(along with Bayesianism, the method of support, and others). I will not

dwell on maximum likelihood principles in this chapter, preferring instead

to discuss directly the more fundamental principles which they instanti-

ate.81

I now present all of the definitions of the likelihood principle which I

have been able to find in the literature, with the exception of many almost

word-for-word copies of Jeffreys’s definition (see below). Within each

of the three groups, I give the definitions chronologically. Some of the

definitions I comment on extensively; others, not at all. When I do not

comment, it is because the definition in question is relatively imprecise and

raises no new issues. At the end of the section on group I, and again at the

end of the section on group II, I give a new definition which encapsulates

the best of the previous definitions.

81. I must, however, mention the importance of maximum likelihood principles to the
theory of inference to the best explanation (IBE). I obviously do not have space to discuss
this connection in detail, but I should mention that the likelihood principle is compatible
with inference to the best explanation and indeed offers some support for it, provided that
IBE is defined, as Lipton (2005) defines it, as advising us to take explanatory loveliness as a
guide to what we should infer, rather than as the narrower principle that says that we should
infer only the most explanatory single hypothesis. See also (Salmon 2001a, Salmon 2001b,
Lipton 2001) for a discussion of the relationship between IBE and the Bayesian version of the
likelihood principle.
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3. GROUP I: THE LIKELIHOOD PRINCIPLE

THE LIKELIHOOD PRINCIPLE: BARNARD’S VERSION (1947)

This was the first statement of the likelihood principle:

The connection between a simple statistical hypothesis H and
observed results R is entirely given by the likelihood, or proba-
bility function L(R|H ). If we make a comparison between two
hypotheses, H and H ′, on the basis of observed results R, this
can be done only by comparing the chances of, getting R, if H
were true, with those of getting R, if H ′ were true.

(Barnard 1947, p. 659)

Barnard immediately gave an argument about the use of the likelihood

principle. Since this book touches only briefly on the use of the likelihood

principle this argument will not figure large, but it is worth quoting for

the simplicity it imposes on the mathematical structure of inferences based

on the likelihood principle, and for its relevance to confirmation theory

(discussed briefly in chapter 3):

Mathematically, if L(R|H ) = L, and L(R|H ′) = L′, then our
decision about H and H ′, in the light of data R, must depend on
the value of some function f (L,L′). Furthermore, this function f
must be a function of the ratio, L′ /L, only. (Because, intuitively,
we can imagine that in addition to observing R, we might have
observed some irrelevant event, such as the fall of a coin, whose
probability is p, independent ofR. Then the likelihoods onH and
H ′ would become pL and pL′ [because these are the probabilities,
under each of the two hypotheses, of observing both the actual
result of the coin toss and the data x], and since such an irrelevant
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observation could not affect our decision about H and H ′, we
must have f (pL, pL′) = f (L,L′) [and so the factor p must cancel
out, which is only possible if f is a function of L′ / L alone].)

(Barnard 1947, pp. 659–660)

The force of this argument is best seen by imagining an inference procedure

which uses the likelihood function p(xa|h) but which is not a function of

L′/L ≡ p(xa|h1)/p(xa|h2) (where xa represents the observed data, as usual).

Such a procedure might use, for example, p(xa|h1) − p(xa|h2). Instead of

considering a separate coin toss, consider that part of the observed data

which is clearly irrelevant to our inferences about hypotheses. When there

is no such part of the data, the argument will have to fall back on Barnard’s

coin toss; but there almost always is some such part of the data. Most

commonly, the order in which the data points were collected is exactly

such a part of the data: provided the data points are exchangeable (as

defined in chapter 2), information about order can be used or neglected,

as we prefer, without making any difference to what we know about the

hypotheses. In this case, we should be able to use our inference procedure

two ways, to calculate both p(xa|h1) − p(xa|h2) and p(ya|h1) − p(ya|h2),

where xa is a sequence of observations and ya is a multiset representing the

same observations but without order information. p(xa|h) will generally

be very different from p(ya|h) — for example, the probability of getting the

sequence of die rolls 〈1, 2, 2〉 is 1 /216 on the hypothesis that the die is fair,

but the probability of getting the multiset [1, 2, 2] on the same hypothesis

is 1 / 72. Similarly, p(xa|h1) − p(xa|h2) will generally be very different

from p(ya|h1) − p(ya|h2). This is a reductio of the use of these formulas in

inference, given our assumption that the order of data points is irrelevant
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to inferences about hypotheses. But the formula p(x|h1) / p(x|h2) escapes

this problem: p(xa|h1) / p(xa|h2) is just the same as p(ya|h1) / p(ya|h2), as

can be rigorously proved, provided that xa is statistically independent from

ya.82 So, Barnard argues (and I agree), whenever we compare pairs of

hypotheses our inferences must be based on functions of p(xa|h1) /p(xa|h2).

What function of p(xa|h1) / p(xa|h2) we should use might depend on

general theoretical considerations outside the scope of this book, or itmight

depend on prior probabilities or utilities. Maximum likelihood estimation,

Bayesian statistical inference procedures and Bayesian decision theory —

the only well-developed general methods compatible with the likelihood

principle to date — all obey Barnard’s restriction that we make inferences

from data to hypotheses using some function of p(xa|h1)/p(xa|h2) alone (the

main differences being that the third takes into account utility functions

and prior probabilities, the second takes into account prior probabilities

but not utility functions and the first takes into account neither utility

functions nor prior probabilities).

THE LIKELIHOOD PRINCIPLE: JEFFREYS’S VERSION (1961)

The prior probability of the hypothesis has nothing to do with
the observations immediately under discussion, though it may
depend on previous observations. Consequently the whole of the
information contained in the observation that is relevant to the
posterior probabilities of different hypotheses is summed up in
the values that they give to the likelihood

82. My reductio is dependent on the assumption that xa is statistically independent from ya ;
Barnard’s argument involving a separate coin toss is not, so his conclusion is more general.
I offer my example even though Barnard’s is more general because it is perhaps not obvious
that a thought experiment in which we consider the addition of new irrelevant information
can be the basis of a tenable argument, whereas my version in which we consider the same
analysis with and without information which is already part of the dataset is more obviously
realistic.
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(Jeffreys 1961, p. 57)

This sums up nicely the orthodox Bayesian view of the likelihood principle:

only the posterior distribution matters for inference (this is not explicit in

the quotation above, but it is made plentifully clear in context), and the only

contribution of observations to a posterior is via the likelihood function

(and via p(xa), which in turn is a function of the likelihood function).

Similar statements are found both implicitly and explicitly in many

other works on Bayesian inference.

THE LIKELIHOOD PRINCIPLE: BIRNBAUM’S VERSION (1962)

The likelihood principle (L): If E and E′ are any two experiments
with the same parameter space [H ], represented respectively
by density functions f (x, θ) and g(y, θ); and if x and y are any
respective outcomes determining the same likelihood function;
thenEv(E, x) =Ev(E′, y) [where Ev is a placeholder for ameasure
of evidence; Birnbaum gives it no precise definition]. That is,
the evidential meaning of any outcome x of any experiment
E is characterised fully by giving the likelihood function cf (x, θ)
(which need be described only up to an arbitrary positive constant
factor), without other reference to the structure of E.

(Birnbaum 1962, p. 283)

This has been the most influential single definition of the likelihood prin-

ciple, coming as it did in a paper which proved the likelihood principle

from plausible axioms for the first time. (I give a similar proof in chapter

13.) However, it is an awkwardly vague definition: some commentators

find the notion of an evidence function opaque. My own definition of the

likelihood principle will not use the notion of an evidence function.
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THE LIKELIHOOD PRINCIPLE: SAVAGE’S 1962 VERSION

According to Bayes’s Theorem, Pr(x|λ) [p(xa|h), in my terminol-
ogy], considered as a function ofλ, constitutes the entire evidence
of the experiment, that is, it tells all that the experiment has to
tell. More fully and precisely, if y is the datum of some other
experiment, and if it happens that Pr(x|λ) and Pr(y|λ) are pro-
portional functions ofλ (that is, constantmultiples of each other),
then each of the two data x and y have exactly the same thing to
say about the values of λ. For example, the probability of seeing
6 red-eyed flies in a randomly drawn sample of 100 is propor-
tional to λ6(1 − λ)94, where λ is the frequency of red-eyed flies
in the population, whether the experiment consisted in counting
the number of red-eyed flies in a random sample of 100, or of
sampling flies at random until 6 with red eyes are observed, or
countless other sequential [analysed while in progress] variations
of these experiments. I, and others, call this important principle
the likelihood principle.

(Savage & discussants 1962, p. 17)

Savage’s 1962 definition is part of a defence of Bayesianism and is therefore

presented in terms of Bayes’s Theorem, a theorem which non-Bayesians

believe applies only in unusual circumstances, so it is inappropriate for my

purposes. But Savage’s example (as opposed to his definition) is relevant to

everyone, Bayesian and non-Bayesian alike. Edwards, Lindman and Savage

comment on a similar example (where 20 successes have been obtained out

of 100):

What is the datum, and what is its probability for a given value
of the frequency p? We are all perhaps overtrained to reply,
“The datum is 20 successes out of 100, and its probability, given
p, is C10020 p20(1 − p)80.” Yet it seems more correct to say, “The
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datum is this particular sequence of successes and failures, and
its probability, given p, is p20(1 − p)80.” The conventional reply
is often more convenient, because it would be costly to transmit
the entire sequence of observations; it is permissible, because the
two functions C10020 p20(1−p)80 and p20(1−p)80 belong to the same
likelihood; they differ only by the constant factor C10020 .

(Edwards et al. 1963, p. 238)

In otherwords, the likelihood principle explains somethingwhich everyone

agrees on: that we can transmit the results of such an experiment using a

sufficient statistic (see chapter 13) which describes only the number of suc-

cesses and sample size. It is important to note that this explanation is not

trivial, especially in the light of the fact that the probability of the sufficient

statistic is not the same as the probability of the actual data: the former is

C10020 p
20(1 − p)80, while the latter is p20(1 − p)80. So in reporting only the

sufficient statistic we are reporting an event which is much more proba-

ble than the event which actually occurred (500,000,000,000,000,000,000

times more probable, in fact). This discrepancy between the probability

of the event and the probability of the reported summary of the event is

prima facie at odds with the Frequentists’ insistence that the probability

of an event is paramount in deciding what inferences to draw from it. So

the Frequentists’ agreement that it makes sense to quote only the sufficient

statistic (and they do all agree on this) very definitely requires explanation.

The likelihood principle does the job of explaining this nicely . . . at a cost,

for a Frequentist, since the likelihood principle contradicts the basic tenets

of Frequentism (see chapter 7 and chapter 15); but as we will see in chapter

13 that is something which they will have to deal with in any case.
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THE LIKELIHOOD PRINCIPLE:
EDWARDS, LINDMAN AND SAVAGE’S VERSION (1963)

Two possible experimental outcomesD andD′—not necessarily
of the same experiment—can have the same (potential) bearing
on your opinion about a partition of events Hi , that is, P(Hi |D)
can equal P(Hi |D′) for each i . Just when are D and D′ thus
evidentially equivalent, or of the same import? . . .

P(D′|Hi ) = kP(D|Hi ).

. . .the likelihood principle: Two (potential) data D and D′ are of
the same import if [this equation] obtains.

(Edwards et al. 1963, p. 237)

Edwards, Lindman and Savage’s paper in Psychological Review was some-

what influential at the time, although its influence seems to have faded a

little.

THE LIKELIHOOD PRINCIPLE: LINDLEY’S BAYESIAN VERSION (1965)

If two sets of data, x and y, have the following properties: (i)
their distributions depend on the same set of parameters; (ii) the
likelihoods of these parameters for the two sets are the same; (iii)
the prior densities of the parameters are the same for the two sets;
then any statement made about the parameters using x should
be the same as those made using y. The principle is immediate
from Bayes’s Theorem because the posterior distributions from
the two sets will be equal.

(Lindley 1965, p. 59)
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Lindley’s statement of the likelihood principle, like Jeffreys’s and Savage’s

statements above, explicitly addresses a Bayesian audience. To a non-

Bayesian, and indeed to a Restricted Bayesian, Lindley’s stipulation that

two prior densities (prior probability functions) should be the same is

nonsensical except in the situations in which uncontentious, objective prior

probabilities exist. More importantly, restricting the likelihood principle to

Bayesian analyses is unnecessary, as the many non-Bayesian versions of the

principle suggest and as shown conclusively in my proof of a non-Bayesian

version in chapter 13.

Nevertheless, Lindley’s definition of the likelihood principle is impor-

tant for the clarity with which it presents the conditions of applicability of

the principle: in particular, his condition (i), that likelihoods should only be

compared if they refer to the same set of parameters, is often overlooked.

This condition is notably lacking from Edwards, Lindman and Savage’s

definition, for example. I include Lindley’s condition in my own definition

of the likelihood principle, when I state (below) that two likelihood func-

tions can only be considered the same if all their variables have the same

meanings within the theories represented by each hypothesis.

THE LIKELIHOOD PRINCIPLE: SAVAGE’S 1976 VERSION

The likelihood principle . . . says that the likelihood function for
the datum that happens to occur is alone an adequate description
of an experiment without any statement of the probability that
this or another likelihood function would arise under various
values of the parameter.

(Savage 1976, p. 474)
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When I am in the mood for a concise but sloppy definition of the likelihood

principle, this one is my favourite. But it is much too vague about the

conditions under which the likelihood applies to meet the objections of its

opponents, so we may as well move straight on to other versions.

THE LIKELIHOOD PRINCIPLE: EDWARDS’S VERSION (1972)

Within the framework of a statistical model, all the information
which the data provide concerning the relative merits of two
hypotheses is contained in the likelihood ratio of those hypotheses
on [given] the data.

(Edwards 1972, p. 30)

Again, this is too vague to meet objections about the exact range of appli-

cability of the likelihood principle. Edwards (unlike Savage) may believe

that the likelihood principle always applies; but I do not, for reasons which

will become clear in chapters 9 to 12.

THE LIKELIHOOD PRINCIPLE: BASU’S VERSION (1975)

By the term ‘statistical data’ we mean . . . a pair (E, x) whereE is
a well-defined statistical experiment and x the sample generated
by a performance of the experiment. . . . To begin with, let us
agree to the use of the notation

Inf(E, x)
only as a pseudo-mathematical short hand for the ungainly ex-
pression : ‘thewhole of the relevant information about [theworld]
contained in the data (E, x)’.

(Basu 1975, pp. 1–2) . . .

252



(The weak likelihood principle) : Inf(E, x′) = Inf(E, x′′) if the two
sample points x′ and x′′ generate equivalent likelihood functions

(Basu 1975, p. 10) . . .

(The likelihood principle) : If the data (E1, x1) and (E2, x2) gen-
erate equivalent likelihood functions on Ω, then Inf(E1, x1) =
Inf(E2, x2).

(Basu 1975, p. 11)

I see no need for the distinction between weak and strong versions of the

likelihood principle. (Basu does not justify the distinction; nor do Barnett

or Stuart, Ord and Arnold, who give the same distinction below.) In my

framework, the set of hypotheses under consideration is, if necessary, the

union of two sets of hypotheses considered as part of twomerriments. (Such

a move is explicitly countenanced in some although not all discussions of

the likelihood principle in the literature, such as (Berger 1985, p. 35).) So

my framework encompasses both Barnett’s weak and strong versions of

the principle. My framework is sufficient to prove the likelihood principle

and sufficient to discuss its consequences— indeed, it is better at that than

Basu’s, since my merriments encompass non-experimental observations

as well as experiments. Basu may have in mind Hill’s point that two-

experiment applications of the likelihood principle can produce certain

counter-intuitive results if the principle is not stated carefully, while one-

experiment applications cannot. But the necessary care in stating the

principle is implicit in the way I set up the mathematics of statistical

inference in chapter 2, and in any case is explicit in my own version of the

principle below. So there does not seem to be any need for me to explore

Basu’s more restricted framework.
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I will avoid using Basu’s terminology of “information”, for three rea-

sons: because it has seemed to some authors to be unclear in the same way

as Birnbaum’s possibly problematic terminology of an “evidence function”,

because it is ambiguous (other, incompatible notions of information having

been defined by Fisher, Shannon and others), and because I do not need it.

Basu also gives a paraphrase of the principle without the contentious

word “information”:

We are debating about the basic statistical question of how a
given data d = (E, [xa]), where E = (X ,Ω, p) is the model and x
is the sample, ought to be analysed. . . . the likelihood principle . . .
asserts that if our intention is not to question the validity of the
model E but to make relative (to the model) judgements about
some parameters in the model, then we should not pay atten-
tion to any characteristics of the data other than the likelihood
function generated by it.

(Basu 1975, p. 62)

This definition brings out nicely the negative character of the likelihood

principle: it tells us what not to do in statistical inference.

THE LIKELIHOOD PRINCIPLE: GOOD’S VERSIONS (1976 AND 1983)

(I) [T]o me the likelihood principle means that the likelihood
function exhausts all the information about the parameters that
can be obtained from an experiment or observation, provided of
course that there is an undisputed set of exhaustive simple statis-
tical hypotheses such as is provided, for example, by a parametric
model.

(Good 1976, reprinted in Good 1983, pp. 35–36)
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This is a much more precise version of the likelihood principle than its pre-

decessors, making explicit as it does the restriction of the likelihood princi-

ple to simple hypotheses. (Recall from chapter 2 that a simple hypothesis is

one which specifies precise probabilities for all possible outcomes of a given

experiment or of a given observational situation.) This restriction was not

made explicit by earlier Bayesian commentators, probably because most

early Bayesians were subjectivists in the school of de Finetti, according

to whom all hypotheses are simple (i.e., all hypotheses state probabilities

for every possible observation). This follows from de Finetti’s insistence

that prior probabilities can be found for any statement; this tells us that

the probability of data x on of any compound hypothesis h = h1 ∪ h2 can

be calculated as
∑

i p(x|hi )p(hi ). This calculation will not be convincing

to non-Bayesians, since they deny the guaranteed existence of the prior

p(hi ). Among the earlier commentators who were not Bayesians, Barnard

probably considered Good’s restriction to simple hypotheses to be implicit,

while Birnbaum, Hacking (who quotes Birnbaum’s version of the principle

in his (1965)) and Edwards certainly considered it implied by their claim

that the likelihood ratio between two hypotheses exists, forgetting only to

make that claim an explicit part of the principle.

Good’s definition of the likelihood principle requires that the set of

hypotheses be exhaustive. This seems to me to be ambiguous. It could

mean that all hypotheses to be consideredmust be included in the likelihood

function—a good idea, which I adopt inmy own definition of the likelihood

principle. Alternatively, it could mean that all possible hypotheses must

be included in the likelihood function. This option is unnecessary . . . and

fortunately so, because it is prima facie impossible. Subjective Bayesians
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include in their analyses all hypotheses with non-negligible probability,

but even they do not include all possible hypotheses.

Good’s second go is even better, not because it is more mathematical

but because it is more comprehensive:

(II) Let E and E′ be two distinct experimental results or obser-
vations. Suppose that they do not affect the utilities (if true) of
hypothesesH1,H2, . . . Hn under consideration. Suppose further
that E and E′ provide the same likelihoods to all the hypothe-
ses, that is, that P(E|Hi ) = P(E′|Hi )(i = 1, 2, . . . n). Then E
and E′ should affect your beliefs, recommendations, and actions
concerning H1,H2, . . . Hn in the same way.

(Good 1981, reprinted in Good 1983, p. 132)

The fixed-utilities clause

Good’s second version of the likelihood principle is noteworthy because it

takes into account the possible complicating factor of utilities (which, in

this context, means judgements of how bad it would be to make various

inferential errors). Taking utilities into account means that the likelihood

principle can tell us something about rational actions as well as beliefs

and statements. This is a major bonus, because it allows the likelihood

principle to go head-to-head with those opposing theories of statistical

inference, notably Neyman and Pearson’s, which are phrased in terms of

actions rather than beliefs or statements.83

83. The modern use of Neyman and Pearson’s methods consists of a theory about which
scientific statements we should accept; but Neyman and Pearson famously denied that they
were giving the foundations for an epistemic theory of any kind; and so, in opposing Neyman
and Pearson, I must oppose their original, behaviourist theory as well as the modern pastiche
of it. (Some of the most salient history of the mis-quoting of Neyman and Pearson’s theory
is given in (Gigerenzer 1993).)
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I will call Good’s restriction of the likelihood principle to cases in

which the data does not affect utilities the fixed-utilities clause.84

THE LIKELIHOOD PRINCIPLE: BERGER’S VERSION (1980)

In making inferences or decisions about θ after [xa] is observed,
all relevant sample information is contained in the likelihood
function.

(Berger 1980, p. 25)

At the risk of quoting Berger too often (a problem exacerbated by the fact

that this book quotes the work of two Bergers, James O. and Roger, who

hold opposing views on the role of the likelihood principle), I include this

relatively imprecise definition for the emphasis it places on inferences made

after xa becomes known. The likelihood principle is solely about inferences

from known data to hypotheses, unlike Frequentist methods (described in

chapter 4), some of the important properties of which, such as type I and

type II error, can be determined from features of the sample spaceX before

xa is known. This is an appealing characteristic of Frequentist methods

which methods based on the likelihood principle cannot match. But in

chapter 7 we saw that the names “type I error” and “type II error” are

misleading, and that some of their appeal is illusory.

84. Note that even under the fixed-utilities clause the data we observe will affect the utilities
of believing in or acting on the various hypotheses; what the data may not do is affect the
utilities of the various hyotheses “if true”: in other words, the data will only affect our utilities
via changes in our beliefs about the truth of the hypotheses, not in any other way.
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THE LIKELIHOOD PRINCIPLE:
BERGER ANDWOLPERT’S VERSIONS (1984 AND 1988)

[E]ssentially . . . all the evidence, which is obtained from an
experiment, about an unknown quantity θ, is contained in the
likelihood function of θ for the given data[.]

(Berger & Wolpert 1988, p. 1)

To translate into table-talk: all the evidence which is obtained from an

experiment about a set of hypotheses is contained in the column of the

table which corresponds to the data actually observed.

Berger and Wolpert also provide a more careful version of the likeli-

hood principle which incorporates important caveats:

Two likelihood functions for θ (from the same or different ex-
periments) contain the same information about θ if they are
proportional to one another [i.e., the same as each other] . . .
[where] θ represents only the unknown aspect of the probability
distribution of X . . . . A second qualification for the LP is that it
only applies for a fully specified model {fθ}. If there is uncertainty
in the model, and if one desires to gain information about which
model is correct, that uncertainty must be incorporated into the
definition of θ. . . . A third qualification is that, in applying the
LP to two different experiments, it is imperative that θ be the
same unknown quantity in each.

(Berger & Wolpert 1988, pp. 19–21.2)

Berger and Wolpert say that the likelihood principle does not apply when

there is “uncertainty in the model”. What they mean by this is perhaps not

immediately clear: within their mathematical framework, “model” does not

carry any of the important heuristic connotations that it does in some other
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parts of the literature. Berger andWolpert’s meaning is well illustrated by

the following example, which Forster and Sober (2004) attribute to Popper

(1959). Suppose we have information about two variables, x and y, and we

want to knowwhether y is a parabolic function of x or a linear function. The

likelihood principle may tell us a lot about the various competing values of

the parameters describing the slope of the x–y graph once we have decided

whether we are looking at a straight line or a parabola; but it does not tell

us anything about whether the graph is a straight line or a parabola. Why

not? Because those two hypotheses are composite hypotheses: the straight

line hypothesis, for example, is the union of various sub-hypotheses — the

various straight lines, plus some noise function describing probabilistically

how the data depart from the perfect line — each of which gives an exact

probability to any given data set; but the composite hypothesis which

states merely that the relationship is some straight line gives no precise

probability to any data set. The likelihood principle does not apply to

these hypotheses, because it only applies to what Berger and Wolpert call

a “fully specified model”, which is what in chapter 2 I called a hypothesis

space (H ) containing only simple hypotheses.

Later in their (1988), Berger andWolpert recommend that uncertainty

about composite hypotheses (“uncertainty in themodel”) should be encoded

in θ “if one desires to gain information about which model is correct”. (I

find this phrasing unfortunately euphemistic. We practically always desire

to gain information about which model is correct!) To apply Berger and

Wolpert’s solution to Forster and Sober’s example, we would add to the

mathematical model a separate binary parameter indicating whether the

data were best fitted by a straight line or a parabola. We would then find
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some way of attributing probabilities to the data conditional on the value

of this binary parameter. To apply Berger and Wolpert’s recommendation

in terms of tables, we would first draw two rows corresponding to the

two composite hypotheses and then we would fill in the corresponding

cells in the table, at least in the column corresponding to the data actually

observed. (For proponents of the likelihood principle, the other columns

are not needed for inference from the data to hypotheses . . . not even for

inference about composite hypotheses.) We would then analyse the table

using our preferred likelihood-principle-compatible analysis.

This is, in outline, a complete solution to the problem of composite

hypotheses, but it elides a very large problem: there is no general method

for filling in the table when the rows represent composite hypotheses. The

whole of my discussion in this book so far has been (and in most of the

rest will be) predicated on the premise that we are considering hypotheses

which are sufficiently specific to assign probabilities to the various possible

vectors of data. The problem is that no matter how specific are the simple

hypotheses we start with, there is no guarantee that composite hypotheses

formed from them will be specific enough to give probabilities to possible

data. Even if we combine just two simple hypotheses, the combination may

not assign any probabilities.85

85. Consider, for example, the hypothesis that you will eat oysters tomorrow. This gives a
nice specific probability to the possibility that you will feel woozy and sick (at least, it does if
you live in an area where the matter has been studied carefully, as it has where I live). Suppose
it is 0. 00001. And the hypothesis that you will smoke too much cannabis tomorrow similarly
gives a specific probability to the possibility that you will feel woozy and sick— say, 0. 5. The
combined hypothesis — the union of the two hypotheses — is that tomorrow you will either
eat oysters or smoke too much cannabis. This combined hypothesis is perfectly clear, but it
does not give a probability to feeling sick and woozy. Why not? Because the probability of
that possibility depends not only on the facts that the individual probabilities depend on, but
also on the relative probability that you will smoke too much cannabis compared with the
probability that you will eat oysters. If you are much more likely to smoke cannabis than
to eat oysters (and a fortiori not very likely to do both) then the probability of the outcome
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When there are competing models which do not give precise proba-

bilities to the possible observations, either because they are composite or

because they are vague (Schaffner 1993, chapter 5), the likelihood principle

does not apply to the choice between those hypotheses, although it does

apply to all the simple sub-hypotheses of the composite/vague hypotheses.

This point is not made clear by Berger and Wolpert. It is incorporated

into my more careful statement of the likelihood principle below.

Berger and Wolpert’s final qualification of the likelihood principle

(that θ be the same unknown quantity in each observation) will have a role

in my proof of the likelihood principle in chapter 13; but as far as I can see

it is not needed in the statement of the likelihood principle itself — it is

used during my proof, but not in its premises nor in the conclusion.

Elsewhere, Berger and Wolpert give a third definition of the likeli-

hood principle which omits to mention that the principle only applies to

conclusions about h (or, equivalently if h is indexed, about θ):

IfE = (X , θ, {fθ} is an experiment, thenEv(E, [xa]) [i.e., evidential
conclusions drawn from E and xa] should depend on E and xa
only through lx(θ).

(Berger & Wolpert 1988, p. 27)

They note later (p. 41.5) that this version of the principle is false, giving

counterexamples in which inferences about certain sub-variables which

comprise θ (so-called nuisance parameters) cannot be made without taking

into account the whole of θ.

conditional on the composite hypothesis is close to the probability conditional on the cannabis
hypothesis — 0. 5. But if you are very unlikely to smoke too much cannabis, relative to your
probability of eating oysters, then your probability of feeling sick and woozy relative to the
composite hypothesis is about 0. 00001. Relevant information about your habits might be
available, but there is nothing in the statement of either simple hypothesis to suggest that it
is. If it is not then we simply cannot fill in the table as Berger and Wolpert suggest.
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THE LIKELIHOOD PRINCIPLE: HILL’S VERSION (1987)

Consider two experiments E1 = (X1, q, {f1q}) and E2 = (X2, q,
{f2q}), where q is the same quantity in each experiment. Suppose
that for the particular realizations x1 and x2 from experimentsE1
andE2, respectively, Lx1 (q) = c.Lx2 (q) [whereLxi is the likelihood
function p(xi |q)], for some positive constant c, and also that the
choice of experiment is uninformative with regard to q. Let P be
any proposition concerning the value of q and nothing else, i.e.,
that q lies in some specified set. Then P should be regarded as
equally valid whether x1 is observed in E1 or x2 is observed in
E2; and in any decision problem where the loss function depends
only upon q and the act taken, the same post-data preference for
acts should obtain whether x1 is observed in E1, or x2 in E2.

There are two differences between [this] and the likelihood
principle of Birnbaum and of Berger and Wolpert. The first is
that their conclusion . . . has been replaced by a weaker conclu-
sion, that rules out joint statements [see below] . . . The second
difference is that the qualification that the choice of experiment
not be informative as to the parameter has been added.

(Hill 1987)86

Hill makes essentially four changes to Berger andWolpert’s version of the

likelihood principle. The first three changes introduce caveats which are

so important that I will give them names, while the fourth change fixes a

mistake in Berger and Wolpert’s statement of the principle which results

from a difference between their notation and mine, and which therefore

holds no danger for me.

86. Hill wrote his version before the edition of Berger and Wolpert’s monograph which I
quoted a moment ago, (Berger &Wolpert 1988), but after the first edition (Berger &Wolpert
1984), upon which Hill comments.
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The no-inference-without-conditioning rule

Let us call Hill’s first caveat the no-inference-without-conditioning re-

striction on the likelihood principle. The restriction is straightforward: in

applying the likelihood principle, one can only use it for inferences from the

data to the hypotheses which have been used to calculate the conditional

probabilities one is using. In terms of our table: one can only apply the

likelihood principle when one is making inferences from observed data to

the hypotheses laid out in the table. In the context of a fixed table, this is

obvious: it just says that when the likelihood principle authorises us to use

the column of the table containing the observed data, it does not authorise

us to make inferences about any hypotheses not contained in the table.

The reason for my choice of name is that the restriction says that we may

only use the likelihood principle to make inferences about the hypotheses

on which we have conditioned to get the probabilities in the table. “Con-

ditioning” here merely means that the probabilities are the probabilities

given by the hypotheses in question.

The no-inference-without-conditioning qualification is also obvious

in most real-life applications of the likelihood principle. We will see the

importance of stating it explicitly when we come to discuss objections to

the likelihood principle in chapters 9 to 12.

The uninformative-choice-of-merriment rule

Hill’s second caveat is one we might call the uninformative-choice-of-

merriment rule. It concerns cases in which we apply the likelihood prin-

ciple to a pair of experiments (which, according to Berger and Wolpert’s

statement of the likelihood principle, which Hill implicitly accepts, must
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give information about the same set of hypotheses). It says that our choice

of experiments (and, in my extension, merriments) must not in itself give

us any information about which hypothesis is likely to be right . . . or,

if it does, that must be taken into account, in which case the likelihood

principle does not apply simpliciter. The logical importance of this caveat

is easy to see: for example, an experimenter might know that one particu-

lar hypothesis is particularly plausible, and base her choice of merriments

on that knowledge. Hill gives the example of a statistician choosing an

experiment which is efficient only if a parameter is small, thus giving us

evidence that the statistician believes the parameter to be small. We would

be irrational not to take such knowledge into account. The rhetorical im-

portance of this caveat will become clear in later chapters, when we will see

that the uninformative-choice-of-merriment rule is a generalisation of the

distinction between informative and uninformative stopping rules, a dis-

tinction which is prominent in the literature on the merits of the likelihood

principle.

A third caveat which Hill introduces is that “the loss function” must

depend only on the hypothesis and “the act taken”. These are decision-

theoretic words. They are important for people who believe that the

conclusions we may draw about hypotheses depend on our utilities. Hill’s

caveat about loss functions is logically equivalent to Good’s fixed-utilities

clause. A loss function is, by definition, a utility function multiplied by−1.

Hill’s example

Hill’s fourth change to Berger andWolpert’s version of the likelihood prin-

ciple is to require that the inferences which are drawn using the principle
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are inferences about “the value of q and nothing else”, where q is a param-

eter which distinguishes between the competing hypotheses. This fourth

caveat serves to rule out a case which would otherwise be a counterexam-

ple to Hill’s statement of the likelihood principle. I will describe this case;

and we will see that it does not threaten any statement of the likelihood

principle based on the framework which I set out in chapter 2, whether it

includes Hill’s fourth caveat or not.

Hill constructs a case in which Berger and Wolpert’s formulation of

the likelihood principle is mistaken. He does this by arranging matters

so that the parameter q encodes inferentially important information about

h ∈ H which cancels out in the likelihood ratio of q, p (E1 ,x1|q)p (E2 ,x2|q) . His example is

as follows (verbatim, except for some abbreviation, and except that I write

r where Hill writes θ, in order for the example to match the terminology

of both Hill’s version of the likelihood principle and my chapter 2). The

reader may skip the details of the example if he is willing to trust that the

likelihood ratio of q can be made independent of h ∈ H , for a specific choice

of Ei and xi , even if Ei and xi remain inferentially relevant to h.

We consider two experiments,E1 andE2, which are to be as in the
definition of the likelihood principle [above]. If Ei is performed
then we will observe the value of the random variable Xi . . .
Let pi (x; q), i = 1, 2, be two different probability mass [density]
functions for the data, that depend only upon the parameter
q. If experiment E1 is performed then let the probability mass
function for the random variable X1 that will be observed be
p1(x; q), given that H1 is true, and let it be p2(x; q), given that H2
is true. If E2 is performed then let the probability mass function
for the random variableX2 that will be observed be p2(x; q), given
that H1 is true, and let it be p1(x; q), given that H2 is true. [Note
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that this specific choice of probability functions, in which pi (x; q)
depends on Hi , means that the value of q carries information
about Hi .] . . .

We shall assume . . . thatPr{H1|Ei , q} =p, a known constant
. . . Hence p is simply the unconditional probability of H1, and
similarly, 1-p is the unconditional probability of H2. . . . We also
assume that the choice of experiment is itself uninformative, i.e.,
that Pr{Ei |q} does not depend upon q . . .

Suppose now that the observation x1 in the experiment E1
is taken as the data. Then the likelihood function for q . . . is

L(q;E1, x1) = Pr{X1 = x1,E1|q}
= Pr{X1 = x1|q,E1} × Pr{E1|q}
∝ Pr{X1 = x1,H1|q,E1} + Pr{X1 = x1,H2|q,E1}
. . .

= p1(x1; q)× p + p2(x1; q)× (1− p).

Similarly, if x2 is observed in E2, then the likelihood function for
q is

L(q;E2, x2) ∝ Pr{X2 = x2|q,E2}
= p2(x2; q)× p + p1(x2; q)× (1− p).

. . . We now make the further (and last) assumption that there
exists a value x1 of the randomvariableX1, forwhich p1(x1; q) = 0
for all q, while p2(x1; q) > 0 for all q; and that there exists a value
x2 of the random variable X2, for which p1(x2; q) = 0 for all q,
while p2(x2; q) > 0 for all q.

(adapted from Hill 1988, p. 121)

This construction ensures that the likelihood function for q is the same

whether x1 is observed in E1 or x2 is observed in E2; and yet one should
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draw different inferences about h ∈ H in those two cases, for in the first

case H1 has probability zero and in the second case H2 has probability

zero. This may appear to violate the likelihood principle. In fact it does

not, unless the likelihood principle is stated particularly sloppily, because

the apparent counterexample trades on calculating the likelihood function

of q but then making inferences about a different variable, h.

It is essential to theworkings of this example that q encodes important

information about h which cancels out in the likelihood ratio p (E1 ,x1|q)
p (E2 ,x2|q) . If

the likelihood function of q is used for inferences about q alone no problem

arises, but if it is used for joint inferences about q and h then the information

about h is relevant to the relationships between possible values of q, even

though it cancels out in the likelihood ratio; and yet, because it cancels

out in the likelihood ratio, (E1, x1) and (E2, x2) apparently entail the same

inference about q. (This cancelling out is a feature of this particular

example; it is not something that is bound to happen whenever q encodes

information about h.)

If, instead of calculating the likelihood function of q, we calculate the

joint likelihood function of q and h, we can safely make joint inferences

about q and h after all. It is impossible for any inferentially relevant

information which the joint likelihood function holds about h to cancel out.

This safe procedure — calculating the joint likelihood function of q and

h — is just the same thing as calculating the likelihood function of the

whole of H , or of calculating the likelihood function of θ ∈ Θ, where Θ

is any index on the whole of H , since in my terminology (see chapter 2),

the hypothesis space H consists of the possible values of H1, H2 and q,

not of Hi or q alone. (An index on H is a bijective function of h ∈ H ,
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also known as a one-to-one correspondence with H . The simplest index,

if H is finite, is of course a function which simply counts through the

members of H .) Hill’s parameter q is not an index on H . What makes

Hill’s example particularly clever is that q is an index of H in experiment

E1 separately or in experiment E2 separately, but it is a different index on

H in the two experiments; so, taking Hill’s example as a whole, q is not a

bijective function of H and hence not an index on H .

In summary, provided we either restrict our inferences to inferences

about the parameter whose likelihood functionwe calculate, or use an index

on the whole ofH (orH itself) as the parameter whose likelihood function

we calculate, we need not worry about Hill’s counterexample. The former

option tells us more than the latter, so it is preferable epistemically. Hill

himself comments,

Of course one might very well also be interested in the Hi , in
which case one might want to include the hypothesis as part of
the overall parameter [i.e., use an index θ instead of an arbitrary
q], but my point is that there is nothing in the conventional
statements of the likelihood principle or in the conventional view
of statistical inference that would force us to do so.

(Hill 1988, p. 124)

In my own version of the likelihood principle below, inferences are always

and only about hypotheses: in Hill’s terminology, the hypothesis is always

part of the overall parameter. When the hypothesis is represented by a

numeric variable θ, θ must be simply an index on the hypothesis space, and

cannot serve a dual purpose by encoding any relationships between the

hypotheses as q does in Hill’s example. (This is all in accord with chapter
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2.) Thus, Hill’s clever counterexample will not apply to my version of the

likelihood principle.

THE LIKELIHOOD PRINCIPLE: BERRY’S VERSION (1987)

Likelihood Principle. The likelihood function Lx(θ) contains all of
the information in an experiment relevant for inferences about
θ, where x stands for the observed data.

(Berry 1987, p. 118)

This is not quite the same as any other version, but it adds nothing of philo-

sophical interest to previous versions. I include it because I like it (because

it is concise without being extremely misleading) and for completeness.

THE LIKELIHOOD PRINCIPLE:
STUART, ORD AND ARNOLD’S VERSION (1999)

the likelihood principle . . . comes in weak and strong forms. The
weak principle . . . states that all the information about θ obtained
from statistical experiment, E, is contained in the [likelihood
function], L(x|θ). If two replications, yielding observations x1
and x2, lead to proportional likelihoods:

L(x1|θ) = c(x1, x2)L(x2|θ),

where the function c is independent of θ, x1 and x2 provide the
same information about θ, or

Ev(E, x1) = Ev(E, x2).

The strong form . . . extends the principle to include two different
experiments, E1 and E2, so that
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Ev(E1, x1) = Ev(E2, x2).

(Stuart et al. 1999, p. 438)

Note that c may depend on x1 and x2. (It is obvious that c must not depend

on θ.)

THE LIKELIHOOD PRINCIPLE:
CASELLA AND BERGER’S VERSION (2002)

LIKELIHOOD PRINCIPLE: If x and y are two sample points
such that L(θ|x) is proportional to L(θ|y), that is, there exists a
constant C(x, y) such that

L(θ|x) = C(x, y)L(θ|y) for all θ,

then the conclusions drawn from x and y should be identical.
(Casella & Berger 2002, p. 291)87

THE LIKELIHOOD PRINCIPLE: ROYALL’S VERSION (2004)

Two instances of statistical evidence are equivalent if and only if
they generate the same likelihood function. This proposition is
called the likelihood principle[.]

(Royall 2004, p. 126)

87. Note that this Berger, who is also the Berger of (Casella & Berger 1987) is a different
person from the Berger of (Berger 1980, Berger & Wolpert 1984, Berger 1985, Berger &
Sellke 1987, Berger & Wolpert 1988, Berger & Berry 1988, Berger 1993).
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THE LIKELIHOOD PRINCIPLE: BARNETT’S VERSION (1999)

The Likelihood Principle. We wish to draw inferences about a
parameter θ in a parameter space Θ. If two sets of data x1 and
x2 have likelihood functions that are proportional to each other,
then they should support identical inferential conclusions about
θ. . . .

There are really two versions of the principle—the weak
version where x1 and x2 arise under a common probability model
. . . and the strong version where the models differ but relate to a
common parameter and parameter space.

(Barnett 1999, p. 188)

4. GROUP II: COROLLARIES OF GROUP I

The following four statements which are claimed by their authors to be

versions of the likelihood principlemight be better seen as rather immediate

corollaries of the versions given above. They are logically weaker than

Group I versions of the likelihood principle, because they do not say that

one must use the likelihood function; only that one must not do what

Frequentists do, namely to base our inferences on averages over unobserved

possible values of observed variables (see chapter 4).88

88. It is worth noting that the most vocal opponents of the likelihood principle, such as
Mayo, base their position precisely on their view that it is advisable to base all statistical
conclusions on averages over unobserved possible values of observed variables: in other
words, their alternative to the likelihood principle (although not, of course, the only possible
alternative) is to adopt precisely its converse.
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THE LIKELIHOOD PRINCIPLE: BIRNBAUM’S COROLLARY (1962)

[The likelihood principle] may be described informally as assert-
ing the “irrelevance of outcomes not actually observed.”

(Birnbaum 1962, p. 271)

THE LIKELIHOOD PRINCIPLE: BERLINER’S COROLLARY (1987)

One should not base final conclusions or confidences on criteria
involving averages over unobserved possible values of observed
variables.

(Berliner 1987)

This is the group II version closest to my heart. There are two important

subtleties in Berliner’s position. He does not say that we should not take

averages of unobserved possible values of variables. He says only that we

should not base our inferences on averages of unobserved possible values

of variables of observed variables. First of all, we can and should consider

averages over unobserved values of variables when we are doing things

other than making inferences about our set of hypotheses. In particular, it

seems to me and, probably, to Berliner, that we should take such averages

whenwe need towork out the expected (average) properties of amerriment

that we have not conducted yet. And secondly, it is only after we have

observed values of the variables available to us that we should stop taking

into account the unobserved values. In terms of my table, we should only

restrict ourselves to a single column once we have observed something

actual on which to base our choice of which column to look at.
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THE LIKELIHOOD PRINCIPLE: BERGER’S COROLLARY (1993)

The LP states that an estimator should be dependent only on the
observed data, rather than the data not seen

(Berger 1993)

5. GROUP II IS LOGICALLY EQUIVALENT TO GROUP I

The principles in Group II entail that we can and should ignore counter-

factuals of the following form:

Had we observed members of the sample space X which we did
not in fact observe, they would have made some contribution to
the error rate of our inference procedure.

As I showed in chapter 7, all Frequentist procedures necessarily rely on

counterfactuals of this form. The error rates defined by Frequentist proce-

dures are, by definition, affected by such counterfactuals; and I suggested

towards the end of chapter 7 that it is precisely this property of Frequentist

error rates which makes them unsuitable for inference about hypotheses.

It is clear that the likelihood principle as defined byGroup I entails the

principle as defined byGroup II (modulo the vagueness of some of the above

definitions), because the Group I principles say that only the likelihood

function may be used to draw inferences from data to hypotheses while the

Group II principles say that only functions of the actual observationmay be

so used.89 The entailment of Group II from Group I follows directly from

89. I am using informal statements of the two groups of principles here, as befits an
argument about two vague categories of more or less vague principles. Consequently, the
present argument about the equivalence of the two groups needs to be taken with a pinch
of salt. I do not think it is important to make these groups more precise. It is, of course,
important to make the likelihood principle more precise, and I do that in a later section of this
chapter.
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the fact that the likelihood function is such a function. The entailment in the

other direction, fromGroup II toGroup I, is less obvious. It can be shownas

follows. Consider an inference procedure which satisfies the requirements

of Group II. Let us label the use of the actual observation made by the

procedure f (xa), without loss of generality. Whatever f (xa) is, it can be

algebraically decomposed into three components: a component which does

not depend on the probability of xa, which we can label f1; a conditional

probability component f3
(
p(xa|f2(H ))

)
, where f2 is an arbitrary function

of the hypothesis space H ; and an unconditional probability component

f4
(
p(xa)

)
. Taking these component functions in turn:

f1, trivially, is irrelevant to whether the inference procedure sat-
isfies the principles in Group I.

No matter what f2 is, f3 is a function of p(xa|h) where h is
a free variable; in other words, f3 is a function of the likelihood
function of xa.

f4 may appear not to be a function of the likelihood function
of xa, but Bayes’s Theorem (the theorem itself, not the more
controversial claims of Bayesianism) ensures that it is, as follows.
Since p is a probability function, the integral of p(h|xa) over h ∈ H
must be 1 (provided that no relevant hypotheses are omitted, a
condition which I make explicit in my definition of the likelihood
principle below). By Bayes’s Theorem,

p(h|xa) =
p(xa|h). p(h)
p(xa)

.

Integrating both sides overH , and noting that the left-hand side
must integrate to 1 as just mentioned, we get

1 =
∫
h

p(xa|h). p(h)
p(xa)
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so 1 =
1
p(xa)

∫
h
p(xa|h). p(h)

so p(xa) =
∫
h
p(xa|h). p(h)

which shows that p(xa) is a function of the likelihood functon of
xa. (In fact, it is best seen as just a normalisation constant.) This
proof is valid even if (as Frequentists sometimes suggest) there
is no epistemological or statistical meaning to be attached to
probabilties of hypotheses. The proof uses only the mathematical
properties of such probabilities, not any interpretation of them.

So each of the components f1. . .4 is a function of the likelihood function. By

construction, then, f (xa) itself is also a functon of the likelihood function.

So the inference procedure in question satisfies the Group I principles

merely by virtue of satisfying the Group II principles. This completes the

(informal) proof that the two groups are equivalent (modulo the vagueness

inherent in the definitions).

6. GROUP III: THE LAW OF LIKELIHOOD

I am aware of only four authors who define the likelihood principle in a

way which does not fit into Groups I or II; and at least three of these four

authors (all except Miller) do so only sometimes, and in other work define

it in a way which fits into Group I.
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THE LIKELIHOOD PRINCIPLE: BARNETT’S RESTATEMENT (1999)

As we saw above, Barnett (1999, p. 188) defines the likelihood principle in

an orthodox way. But later in the same book, while discussing the views

of Barnard (who has an orthodox definition of the likelihood principle),

Barnett writes:

for present purposes [the likelihood principle] may be restated as
follows in two parts.
(i) If the ratio of the likelihoods for two sets of data is constant
for all values of a relevant parameter θ, then inferences about
θ should be the same whether they are based on the first,
or the second, set of data. This implies that the likelihood
function conveys all the information provided by a set of
data concerning the relative plausibility of different values
of θ.

(Barnett 1999, p. 309)

So far this is orthodox and more or less agrees with Barnett’s other defi-

nition. But then he adds a statement of the law of likelihood, calling it part

(ii) of the likelihood principle:

(ii) The ratio of the likelihoods, for a given set of data, at two
different θ values is interpretable as a numerical measure of
the strength of evidence in favour of the one value relative
to the other.

(Barnett 1999, p. 309)
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THE LIKELIHOOD PRINCIPLE: MILLER’S VERSION (1987)

This might be called the “likelihood principle”: the strength with
which a body of data supports a hypothesis as against rivals is
the greater as the data are more likely should the hypothesis be
true and less likely should the rivals be true.

(Miller 1987, p. 270)

This is the same idea as Barnett’s second definition (presented in a more

confusing way) except that, unlike Barnett, Miller does not say that the

likelihood is a strength of evidence but only that it increases as the strength

of evidence increases (i.e., it is a monotonic function of a strength of

evidence).

THE LIKELIHOOD PRINCIPLE:
FORSTER AND SOBER’S VERSION (2004)

Forster and Sober (2004), claiming to quote Hacking (1965) and Royall

(1997), give a two-part version of the likelihood principle:

There is first of all the idea . . . which we will call the qualitative
Likelihood Principle:
(QUAL)O favorsH1 overH2 if and only if Pr(O|H1) > Pr(O|H2).

[And then there is the idea] that the likelihood ratio measures the
degree to which the observations favor one hypothesis over the
other:
(DEGREE) O favors H1 over H2 to degree x if and only if O
favors H1 over H2 and Pr(O|H1) / Pr(O|H2) = x.

(Forster & Sober 2004a, p. 3)
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Elsewhere in the literature (including in Royall’s book, contrary to what

Forster and Sober say Royall says) this principle is called the law of like-

lihood and is clearly distinguished from the likelihood principle (Royall

1997, p. 3; Hacking 1965, p. 65). Forster’s later work steps back from the

above definition, and instead defines the likelihood principle along the lines

of Group I above (Forster, personal communication).

In this book, I will not be concerned with DEGREE. I will discuss the

differences between QUAL and the likelihood principle proper in chapter

9.

As I have already emphasised, the statements in group III are really

statements of the law of likelihood, a principle which is logically much

stronger and therefore potentially more contentious than the likelihood

principle. I believe it is extremely important for clarity in the discussion

of statistical inference that criticisms of the law of likelihood do not rub

off on the likelihood principle. Similarly, there are dangers in confusing

arguments for one principle with arguments for the other. An argument

which supports the likelihood principle need not be, and generally is not,

an argument for the law of likelihood. This is easy to see if we recall that

the former is a only principle aboutwhen, not how, we should use the whole

likelihood function, while the latter is a principle about numerical measures

of relative strength of evidence.90

90. Does the law of likelihood imply anything at all about the truth of the likelihood
principle? I am not sure, because of ambiguities in the statement of the law of likelihood
(ambiguities which I do not need to resolve for the main work of this book). It is not clear
to me whether the law of likelihood, as stated above, implies that any other adequate measure
of relative strength of evidence must be equivalent to the measure suggested by DEGREE.
If so then the law of likelihood implies the likelihood principle. This has been the view of
the some prominent writers on the law of likelihood. (Royall is one such. He does not make
this point explicitly, but it is fairly clear from the discussion at (Royall 1997, pp. 22–24).) But
alternatively one could read the principle as saying, more agnostically, that the suggested
measure is only one amongmany non-equivalent measures, in which case the law of likelihood
implies nothing about the likelihood principle.
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Incidentally, in 1965 Hacking took the view that the law of likelihood

does not imply the likelihood principle because the law of likelihood allows

the likelihood function to be changed when the statistical model is reap-

praised, while the likelihood principle, he takes it, does not (Hacking 1965,

pp. 219–220). In my version, and many others, it does, but in 1965 that

was not as clear as it is now.

Unlike Groups I and II, Group III is not sufficiently important to my

investigation to merit a careful rewording.

7. A NEW VERSION OF THE LIKELIHOOD PRINCIPLE

The following version of the likelihood principle states the main body

of the principle precisely and incorporates all of the assumptions which

other authors have stated piecemeal. It is the only version of the princi-

ple to date to incorporate all the necessary assumptions: namely, all the

assumptions required by previous versions of the principle, except for the

specifically Bayesian assumptions suggested by Lindley and others and

except for the assumptions required by Basu’s distinction between weak

(intra-experiment) and strong (inter-experiment) versions (which I have

shown to be unnecessary).

My version of the principle incorporates all the assumptions which

are necessary to the proof which I will give in chapter 13, but it does not

incorporate all the assumptions thought to be necessary by all authors. For

example, Barnard, Jenkins and Winsten (1962) suggest that the likelihood

prinicple fails to apply when the sample space or the hypothesis space “are

provided with related ordering structures, or group structures, or perhaps

other features”. Barnard et al. do not argue explicitly in favour of this
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restriction of the likelihood principle, while Basu explicitly argues against

it, essentially by arguing that the burden of proof is on Barnard et al. to

justify this “blank cheque against all violations of [the likelihood principle]”

(Basu 1975, p. 20). My own position is simply that neither the informal

arguments for the likelihood principle which I have given so far nor my

proof of chapter 13 require or even suggest a restriction of the sort Barnard

et al. recommend. (“Hypothesi non fingo.”)

Terminology

i By “inferences” I mean any beliefs and partial (probabilistic) beliefs

which are held or followed and any actions which are taken, as delib-

erate results of an observation.

ii xa denotes a vector representing all observations considered relevant

to any of the hypotheses in some set H . xa can be purely observa-

tional: it need not result from one or more deliberately constructed

experiments. [Discussion: the likelihood principle is only useful if

the set H contains all the hypotheses of interest; but this need not

be made an explicit condition of its applicability, provided inferences

about hypotheses not inH are avoided, as formalised in the following

point.]

iii By “inferences about hypotheses” I mean any inferences about the hy-

potheses in H : such inferences must not mention any hypotheses not

contained inH except that they may (trivially) mention any hypothe-

ses whose truth is not in doubt and any hypotheses on which xa has no

bearing. [Discussion: in the absence of this condition, the likelihood

principle could require that we treat two observations as evidentially

equivalent even though one supports an important but unmentioned
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hypothesis more strongly than the other one does. Detailed exam-

ples illustrating the need for this condition are given in (Berger &

Wolpert 1988, pp. 36–38) and elsewhere in the statistical literature,

but really the need is completely general and detailed examples are

not necessary to show its importance.]

iv Two likelihood functions are considered equal if all their variables

have the same meanings within the theories represented by each

hypothesis, and if the two functions are proportional (iff (∃c > 0) (∀h)

(L1(h) = c.L2(h)). [Discussion: the caveat that the variables must

have the same meanings is what I called “Lindley’s condition” above.

It meets an objection by Pratt which I consider in chapter 13.]

Conditions of applicability

1. We cannot infer anything about the relative importance of the various

possible inferential errors from the observation (i.e., the loss function,

or equivalently the utility function, is either independent of the obser-

vation or unimportant). [This caveat replaces Good’s fixed-utilities

clause.]

2. The choice of observation is not informative about the hypotheses, only

its outcome. [This replaces Hill’s uninformative-choice-of-merriment

clause.]

3. The Well Defined Likelihood Function condition: For each hypoth-

esis h under consideration in a statistical analysis, ph(xa) ≡ p(xa|h)

must be a well defined function (i.e., have a single value). [This in-

corporates the no-inference-without-conditioning clause, discussed

above, which says that one can only use it for inferences from the data
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to the hypotheses which have been used to calculate the conditional

probabilities one is using.]

The likelihood principle

Inferences from observations to hypotheses should not de-
pend on the probabilities of observations which have not
occurred, except for the trivial constraint that these probabili-
ties place on the probability of the actual observation under the
rule that the probabilities of exclusive events cannot add up to
more than 1.

The likelihood principle, as I define it, does not entirely deny that inferences

can be based on unobserved or counterfactual outcomes, and nor does it

deny the importance of modal considerations in general. It is not in

any sense a disguised form of actualism (the metaphysical notion that

only the actual exists). It is only certain specific non-actual probabilities

which the lilkelihood principle holds to be irrelevant . . . and, even then,

it only holds them to be irrelevant to inferences about simple hypotheses

after observations have been made, and not to (for example) the design of

experiments.

Note in particular that the likelihood principle allows inferences about

hypotheses to depend on beliefs about merely possible outcomes as long as

those beliefs are not probabilistic. (Thanks to Alan Hájek for this point.)

In this and other ways, the likelihood principle does not rule out the use of

modal claims in general in statistical inference. It only rules out the use

of a very specific type of modality. It would be interesting to investigate

whether it could be extended to cover any other types of modality without
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becoming equivalent to metaphysical actualism. I do not attempt such an

investigation in this thesis.

8. OTHER USES OF THE LIKELIHOOD FUNCTION

In this section, I will discuss an important body of work on the episte-

mology of the likelihood function. This body of work was established by

books by Hacking and Edwards appearing in 1965 and 1972 respectively,

and was extended by a book by Royall in 1997. All three books promote

the method of support, which I have already described briefly in chapter

5. I was not able to discuss the method of support then in as much detail

as I would have liked, because at that point we did not yet have a detailed

understanding of the likelihood principle.

The work I will discuss in this section is concerned with the question

ofwhether (and if so how) the likelihood principle can be applied to scientific

inference without adding anything, such as prior probabilities, to the usual

scientific description of the situation. The question is whether we can

perform substantive inferences about hypotheses given only the ingredients

shown in Table 1— a set of possible observationsX and a set of hypotheses

H (remembering that p is incorporated intoH as described in chapter 2).91

The logical relationship between thiswork and the likelihood principle

is not completely straightforward. Pure likelihood methods are useful for

91. Prior to Hacking’s and Edwards’s books, the literature uniformly took it that there
was no way to do this. In particular, almost the only supporters of likelihood methods
prior to Hacking were Fisher, who, as we have seen, supported them only intermittently,
and Bayesians, who (without exception) only make inferences about hypotheses once they
have determined a prior probability distribution for the parameters of interest — and a prior
probability distribution, although it may be objective in some cases, is certainly not part of
either X or H . It is for this reason that I call Hacking’s and Edwards’s methods “pure”
likelihood methods: they use purely the likelihood function and nothing else.
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inference only if the likelihood principle is true, so in supporting pure

likelihood methods the authors I discuss in this section are supporting

the likelihood principle at least implicitly and, in fact, explicitly. But the

converse is not true: the likelihood principle does not imply that any pure

likelihood method exists that will give epistemologically valid inferences

(except for trivial ones, of course). The likelihood principle entails that

inference procedures in a given situation must supervene on the likelihood

function (no difference in inference from xa toH without a difference in the

likelihood function), but it does not entail that the likelihood function alone

can tell us anything non-trivial.92 Consequently, the supporters of pure

likelihood methods are claiming much more than the likelihood principle

claims.

The law of likelihood 6= the likelihood principle

It is vital to distinguish between two principles with confusingly similar

names. One is the likelihood principle, for which we have already had

definitions ad nauseam. The other is the law of likelihood, also very

occasionally called the likelihood principle (see group III above), which says

something superficially similar but actually very much more ambitious.

The least ambitious version of the law of likelihood in the literature is this:

If h and i are simple joint propositions [something slightly more
specific than what I have been calling hypotheses] and e is a joint

92. This is easy to see if we recall that Bayesianism is compatible with the likelihood
principle. Bayesians agree that our conclusions supervene on the likelihood function in
a particular epistemic situation, but only because in a particular epistemic situation the prior
probability function is held fixed. The idea that supervenience on the likelihood function may
not guarantee the existence of any non-trivial pure likelihood methods is not restricted to
Bayesians, although they are the most prominent writers on this point (Berger & Wolpert
1988, chapter 5, for example). In principle, one might believe that all sorts of information
about a particular observational situation or about the variables in question is necessary before
one can use the likelihood principle to make inferences. (D. A. S. Fraser is one non-Bayesian
who has made this point repeatedly.)
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proposition [an observation], and e includes [is compatible with]
both h and i , then e supports h better than i if the likelihood of h
exceeds that of i .”

(Hacking 1965, p. 59)

Or, in less idiosyncratic terminology,

Law of likelihood: If hypothesis A implies that the probability that
a random variableX takes the value x is pA(x), while hypothesisB
implies that the probability is pB(x), then the observation X = x
is evidence supporting A over B if and only if pA(x) > pB(x), and
the likelihood ratio, pA(x) / pB(x), measures the strength of that
evidence (Hacking, 1965).

(Royall 1997, p. 3)

If the defence of the law of likelihood in (Hacking 1965), (Edwards 1972)

and (Royall 1997) is successful then its success is inherited by the likeli-

hood principle, because the law of likelihood entails the likelihood principle

(provided the two principles are stated with the same conditions of appli-

cation). But if the law of likelihood falls, that does not necessarily reflect

badly on the likelihood principle, because the likelihood principle is much

weaker. The important difference between the two principles is that the

law of likelihood talks about an observation supporting one hypothesis to a

greater extent than another, while the likelihood principle makes no mention

at all of the extent to which an observation supports a hypothesis. This may

seem an unproblematic difference, or even no difference at all, since the

likelihood principle talks about the conditions under which an observation

supports two hypotheses equally. The appearance that the two principles

are logically equivalent may arise from the fact that both tell us that the
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following statement describes a function Ev which in some sense tells us the

evidential support that xa provides for h1 and h2:

If p(xa|h1) = p(xa|h2), then Ev(h1|xa) = Ev(h2|xa).

For proponents of the law of likelihood, this statement is straightforwardly

true. For proponents of the likelihood principle it is true but misleading,

because they need not hold that Ev is a number (as the statement seems to

suggest it is).

The bulk of the proponents of the likelihood principle, beingBayesians,

hold that Ev should be equated with the posterior distribution which is

the result of a Bayesian analysis, perhaps together with a utility function.

The posterior distribution is typically a continuous function, and often

highly multidimensional. It most certainly is not a number. So much for

Bayesians. Other proponents of the likelihood principle do not have to say

that Ev is any sort of mathematical entity at all. They assert that our

conclusions about h1 and h2 should be the same in some circumstances, but

they need not say that those conclusions must have any formal structure.

Now, whatever Ev is, perhaps it can be reduced to a number for some

purposes. The law of likelihood asserts that it always can (or, of course,

that Ev actually is a number). The likelihood principle does not. That is

why the likelihood principle is much weaker than the law of likelihood.

Recently, a number of authors writing on confirmation theory (the

theory which treats Ev as a number) have begun to investigate the con-

straints which this approach places on the nature of Ev (Fitelson 2001,

Steel 2003). It is to be hoped that their investigations are fruitful; but

those who do not treat Ev as a number do not have to abide by those
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constraints — at least, not as far as anyone has shown to date. Of course

it is possible that mathematical results in any field of enquiry may impact

on any other field, and so results from confirmation theory could impact

on the likelihood principle; but so far they have not done so.93

9. THE LIKELIHOOD PRINCIPLE IN APPLIED STATISTICS

Historically, one source of opposition to methods that comply with the

likelihood principle has been intellectual, but there has been another source

of opposition as well: namely, that statistical methods which comply with

the likelihood principle were not feasible in many areas of science until the

advent of computers.

Although the likelihood principle itself is very simple, and the proce-

dures developed to date which comply with it (almost all of them Bayesian)

are also, conceptually, very simple, as we will see when we meet examples

of them in chapter 15, their very simplicity causes a calculational problem.

Non-likelihood methods require ad hoc manipulations of the data, some

of which are summarised in the test statistic T(x) which I discussed in

chapter 7. If the question we are asking is whether we should believe the

results of an inference procedure, the ad hocness of T(x) counts strongly

against it. On the other hand, if the question we are asking is whether an

inference procedure lends itself to easy calculation then we need to look

at T(x) more favourably, because it can be chosen so as to simplify the

93. Steel has suggested in print (Steel 2003) that his results have considerable force for
Bayesians, but acknowledges in personal communication that as long as Bayesians are com-
mitted only to the likelihood principle and not to the law of likelihood his results do not affect
them.
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calculations enormously. Now, Bayesian procedures never need to intro-

duce any components that are ad hoc.94 But this leads to a need to evaluate

integrals of (typically) very high dimensions and arbitrary shapes; and that

has hindered the use of such procedures in real-world problems.

This problem rather rapidly became less important in the 1980s and

1990s, when cheap computers became available which could evaluate such

large integrals — at least in most cases. Sadly, the methods used by

applied statisticians, and sanctioned by regulatory agencies and funding

bodies, became ossified just a couple of decades before computers were

powerful enough to provide a good menu of alternatives to Frequentist

procedures.

It is hard to be sure whether the slowness of computers can be read

into the history as a really important factor in the decisions that have been

made by the statistical community; but one suggestive piece of supporting

evidence is that recently some important regulatory agencies have begun

to liberalise the inference procedures which they sanction among the scien-

tists whose work they are asked to endorse. For example, in mid 2004 the

US Food and Drug Administration, possibly the most influential arbiter

of statistical methods in the world, advertised posts for fifteen statisticians

with PhDs in Bayesian methods (all of whom will a fortiori be experts

on methods of inference compatible with the likelihood principle). This

liberalisation coincides with the widespread availability of computers fast

enough to implement Bayesian methods of the type necessary for phar-

maceutical research. Possibly this timing is not coincidental. If not, that

94. Bayesian procedures may have some components which are subjective, which is perhaps
problematic, but even the subjective components are not ad hoc: they are chosen to accurately
reflect some agent’s belief state. By and large, Bayesians have chosen to hold on to this pristine
nature of their inference procedures by not introducing any unnecessary ad hoc simplicifation
of the model.
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suggests (perhaps tentatively) that the lack of availability of computation-

ally feasible procedures has always been a barrier to the acceptance of the

likelihood principle. Such speculations have no bearing on the truth of the

main arguments of this book; but they do have a bearing on their practical

importance.
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— 9—
Misreadings of the Likelihood Principle

This chapter, and the following three, consider objections to the likelihood

principle. I will show that none of them is convincing. I will defer

objections to my proof of the likelihood principle to chapter 14. There I

will show that none of those objections is convincing either.

In this first objections chapter, I will get out of the way a number

of objections which are based on accidental misreadings of the likelihood

principle. All of the objections I consider in this chapter have been made

by authors who quote from the same pool of versions of the likelihood

principle as I give in chapter 8; so they are not intending to refer to some

different principle. They are objecting to what they see as essentially the

same principle as the one which this thesis supports; however, they have

misread the principle, and are actually, in their various ways, attacking

something which I do not defend.

In the three chapters which follow this one, I will consider objections

which apply to the likelihood principle as I have stated it.

1. OBJECTION 9.1
THE LIKELIHOOD PRINCIPLE IMPLIES THAT

WE SHOULD TAKE NO CARE OVER
EXPERIMENTAL DESIGN

One of the claims [of the Bayesian approach] is that the experi-
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ment matters little, what matters is the likelihood function after
experimentation. . . . It tends to undo what classical statisticians
have been preaching for years: think about your experiment,
design it as best you can to answer specific questions, take all
sorts of precautions against selection bias and your subconscious
prejudices.

Le Cam, quoted in (Mayo 1996, p. 337)

It may be that Le Cam did not mean to attack the likelihood principle,

only some orthogonal part of Bayesianism; but regardless of what Le

Cam meant, Mayo gives this quotation as an objection to the likelihood

principle.95

This thesis is entirely about the problem of statistical inference, not

about experimental design, as I said at the outset; but if I reached conclu-

sions which had blatantly false implications for how we should think about

experimental design, that would be no good; so I must respond to Le Cam’s

objection. Since I am not defending Bayesianism, but only the likelihood

principle, it will suffice to show that the likelihood principle does not im-

ply that we should ignore experimental design. This is a trivial task: my

version of the likelihood principle, and also all other versions when read

in context, say that given that observations have been made in a certain

inferential context certain consequences follow. So the likelihood principle

simply does not say anything about experimental design, except what we

can infer from it by very indirect means, after considering possible frame-

works of experimental design with which it could be used. Such possible

frameworks are infinitely varied, and neither I nor (as far as I can see in

95. Mayo’s implication that Le Cam intended to attack the likelihood principle, although
unimportant here, is probably correct given his other views.
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this or in their other work) Le Cam nor Mayo believe that the likelihood

principle must be used only with experiments designed by Bayesians.

That on its own is enough to show that the likelihood principle does

not imply that we should ignore experimental design; I do not additionally

need to show that Bayesians do not ignore experimental design. But it is

easy to show this too, at least in a sketchy way, so I will do so. Experimental

design, including all of the aspects which Le Cam cites as important, is

discussed in the following Bayesian works among many, many others:

(Gelman et al. 1995), (O’Hagan 1994), (Berger 1980), (Jaynes 1983), (Raiffa

& Schlaifer 2000), (Savage 1954), (Lindley 1965), (Jeffreys 1973), (Good

1965), (Good 1965), (Bernardo & Smith 1994), (Spiegelhalter et al. 1986),

(Freedman & Spiegelhalter 1989), (Freedman et al. 1983).

There may be versions of Bayesianism which incite us not to care

about Le Cam’s concerns, but if so I have never heard of them; and (Gelman

et al. 1995) and (O’Hagan 1994), which seem to currently be the dominant

references for Bayesian scientists, are clearly in agreement with Le Cam

about the importance of experimental design.

2. OBJECTION 9.2
IN A WIDE RANGE OF CASES, THE LIKELIHOOD
PRINCIPLE FORCES US TO PREFER A COMPLEX

MODEL TO A SIMPLE ONE

In order to fully state this objection to the likelihood principle, I need to

reiterate Forster and Sober’s definition of the principle (already discussed

briefly in chapter 8).
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FORSTER AND SOBER’S DEFINITION

In a recent paper on the likelihood principle, Forster and Sober (2004)

redefine the principle as follows.

There is first of all the idea . . . which we will call the qualitative
Likelihood Principle:
(QUAL)O favorsH1 overH2 if and only if Pr(O|H1) > Pr(O|H2).

[And then there is the idea] that the likelihood ratio measures the
degree to which the observations favor one hypothesis over the
other:
(DEGREE) O favors H1 over H2 to degree x if and only if O
favors H1 over H2 and Pr(O|H1) / Pr(O|H2) = x.

(Forster & Sober 2004a, p. 3)

As I have shown (with numerous citations to back my definition), the like-

lihood principle does not include QUAL or DEGREE. Forster and Sober

have confused the likelihood principle with a totally different (although ad-

mittedly confusingly named) principle called “the law of likelihood” (Boik

2004). None of the definitions I can find in the literature agree with Forster

and Sober’s or significantly disagree with mine, with the sole exceptions

of Miller’s and one (but not the other) of Barnett’s.

Since, as I have argued, the likelihood principle is important, it is

vital to be clear about its meaning and clear about which arguments count

against it as opposed to counting merely against the law of likelihood. I

will therefore pursue this terminological issue a litttle further. Forster and

Sober cite Royall’s (1997) for their definition of the likelihood principle.96

96. They are explicit about this. They write: “Royall follows Hacking in construing the
likelihood principle as a two-part doctrine. There is first of all the idea, noted above, which
we will call the qualitative Likelihood Principle”, followed by the definitions QUAL and
DEGREE given above.
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But this attribution to Royall is simply a mistake. Royall’s definition is

essentially the same as mine. And while it is true that Royall’s definitions

come fromHacking, Hacking is evenmore explicitly opposed to a definition

like Forster and Sober’s than Royall is.

Since attribution is at issue, I quote at length instead of paraphrasing.

First of all, Royall:

The likelihood principle
Suppose two simple hypotheses for the distribution of a random
variable X assign respective probabilities f1(x) and f2(x) to the
outcome X = x, while two different hypotheses for the distribu-
tion of another random variableY assign respective probabilities
g1(y) and g2(y) to the outcomeY = y. If f1(x)/ f2(x) = g1(y)/g2(y)
then the evidence in the observationX = x regarding f1 vis-à-vis
f2 is equivalent to that in Y = y regarding g1 vis-à-vis g2. If a
third distribution, f3, is considered for X , and a third, g3, for Y ,
then the two outcomes,X = x andY = y, are equivalent evidence
concerning the respective collections of distributions, {f1, f2, f3}
and {g1, g2, g3}, if all of the corresponding likelihood ratios are
equal: f1(x) / f2(x) = g1(y) / g2(y), f1(x) / f3(x) = g1(y) / g3(y), etc.
This fact is called the likelihood principle

. . . The likelihood principle asserts that two observations
that generate identical likelihood functions are equivalent as ev-
idence; in Birnbaum’s (1962) words, ‘the “evidential meaning”
of experimental results is characterized fully by the likelihood
function’. ”

(Royall 1997, p. 24, quoting Birnbaum 1962)

Royall does give a principle identical to QUAL, but (quite rightly, in view

of the previous literature) he calls it the law of likelihood:
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Law of likelihood: If hypothesis A implies that the probability that
a random variableX takes the value x is pA(x), while hypothesisB
implies that the probability is pB(x), then the observation X = x
is evidence supporting A over B if and only if pA(x) > pB(x), and
the likelihood ratio, pA(x) / pB(x), measures the strength of that
evidence

(Royall 1997, p. 3)

Moreover, Hacking, after giving essentially the same definitions as Royall

(and citing Barnard 1947, Savage 1961 and Birnbaum 1962 in support),

says:

The likelihood principle does not entail the law of likelihood[.]
(Hacking 1965, p. 65)

So attacking the law of likelihood does not attack the likelihood principle.

Given that Forster and Sober havemade an error in citation, it remains

to see what we should mean by “the likelihood principle”. Perhaps there is

some reason to prefer Forster and Sober’s definition to mine. But I think

not. The considerations which we normally use to decide on the meanings

of technical terms include etymological precedence and some notion of

pragmatism or suitability for purpose. Both of these considerations come

out against Forster and Sober’s definition.

Firstly, the etymological point can be won either historically or

through sheer weight of numbers. The weight of numbers are clear from

my earlier citations of many versions of the principle. Historically, Forster

and Sober’s definition has appeared only in recent years. By contrast, the

use of the likelihood principle by other authors is based on the following

observation of G. A. Barnard in 1947:
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The connection between a simple statistical hypothesis H and
observed results R is entirely given by the likelihood, or proba-
bility function L(R|H ). If we make a comparison between two
hypotheses, H and H ′, on the basis of observed results R, this
can be done only by comparing the chances of, getting R, if H
were true, with those of getting R, if H ′ were true.

(Barnard 1947, p. 659)

This is clearly the likelihood principle as I define it, not the law of likelihood.

This definition immediately gained currency, and was widely popularised

by a much-cited paper in 1962 (Birnbaum 1962). So it has very clear

precedence in the literature.

Secondly, we can ask whose version of the principle is most accept-

able on pragmatic grounds. Forster and Sober agree that the likelihood

principle is a better foundation for statistical inference than either of the

dominant two schools of thought (“Neyman-Pearson-Fisher statistics and

. . . Bayesianism”, (Forster & Sober 2004a, p. 152)). It follows that it would

be extremely useful to have a name for this principle which shows it in

the best light possible. After all, we all want to avoid attacking a straw

man. Forster and Sober’s definition is clearly not the best, since it falls

to at least one of their criticisms while alternative definitions do not (as

I show below). Moreover, elsewhere Sober himself has accepted that the

likelihood principle can validly be defined as I define it.97 Of course we

could accept Forster and Sober’s definition despite these objections, but I

have shown that that would be expensive.

97. Sober has written: “the Likelihood Principle, taken at its word, does not rule out the
possibility that one can talk about the evidence for or against a given hypothesis without
reference to alternative hypotheses. True, advocates of ‘likelihoodism’ have endorsed the
Likelihood Principle and have also insisted that evidence is essentially comparative . . .”
(Sober 2002b) (my emphasis). In (Sober 2002b) Sober does not saywhat he takes the likelihood
principle to be, but he does say that it need not take evidence is essentially comparative, from
which it follows that it cannot be the same as the law of likelihood.
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On the same lines of reasoning, DEGREE should not be taken to be

part of the likelihood principle. I agree with Forster and Sober’s criticisms

of DEGREE — for example, that it uses an ad hoc confirmation function,

which Fitelson 2001 has shown to be problematic. But again, this is not a

criticism of the likelihood principle.

OBJECTION 9.2 CONTINUED

According to Forster and Sober, QUAL cannot generally be used to com-

pare hypotheses which have different numbers of parameters. They use an

example to show this. They consider the set containing all hypotheses of

the form y = a+ bx + u and all hypotheses of the form y = a+ bx + cx2 + u.

Note that the former subset consists of all the straight lines in the plane,

and that it is nested inside the latter subset, the parabolas, since every

straight line is also a parabola.

At this point in their argument, Forster and Sober say that to compare

the likelihoods of composite hypotheses we may do one of two things. We

may take an average of the likelihoods of the members of each — a move

taken from Bayesian theory, in which likelihoods may be combined using

weighted averages, with the weights being ascribed by a prior probability

function. Or we may compare the likeliest member of one subset with the

likeliest member of the other. They dismiss the former possibility with the

following argument:

Because LIN [the set of straight-line hypotheses] is nested in-
side of PAR [the set of parabolic hypotheses], it is impossible
that Pr(LIN|Data) > Pr(PAR|Data), no matter what the data
say. When scientists interpret their data as favoring the simpler
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model, it is impossible to make sense of the judgement within
the framework of Bayesianism.”

(Forster & Sober 2004a, p. 159)

No argument is given for this, and it ismathematicallywrong, as is probably

obvious; if not, just slot in the following prior probability density function:

Pr(straight line with slope a and intercept b) ∝ a

Pr(parabola with coefficients a, b and c) = 0.98

Forster and Sober’s hasty rejection of the Bayesian option for evalu-

ating composite hypotheses leads them to accept the following principle

(which they do not name, so I name it for them):

[COMPARE] Composite hypotheses are to be compared “by com-
paring their likeliest special cases.”

(Forster & Sober 2004a, p. 159)

COMPARE tells us how to compare the likelihoods of composite hypothe-

ses — hypotheses, like the subsets above, which do not themselves assign

probabilities to individual possible observations but which contain sub-

hypotheses which do.

The fact that the straight line subset is nested in the subset of parabo-

las, along with COMPARE, entails that the maximum likelihood must be

found within the set of parabolas. Forster and Sober say that “when models

are nested, it is almost certain that more complex models will fit the data

better than models that are simpler. However, scientists don’t take this as

98. This function is known as an improper prior because it does not integrate to 1. Some
Bayesians allow improper priors. For the others, the improper function can be replaced by the
proper but less perspicuous prior Pr(parabola with coefficients a, b and c) = 0 if c 6∈ [0, ε],
Pr(parabola with coefficients a, b and c) = f (c) otherwise, where ε � Pr(PAR|Data) and f
is any function which integrates to 1/ε— a Random Bessell function would do, for example.
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a reason to conclude that the data always favor” the more complex models.

Therefore QUAL, which says that they should favour the more complex

models in this case, is implausible. Thus, Forster and Sober conclude, the

likelihood principle is implausible. This ends the statement of the current

objection.

RESPONSE TO OBJECTION 9.2

Strictly speaking, I have already defused this objection by showing that

it applies only to the law of likelihood, not to the likelihood principle.

Nevertheless, let us see whether criticism 2 tells us anything at all. I

will conclude that it does have some force, but not enough to rule out the

likelihood principle.

There are two logical errors in criticism 2. Firstly, the principle

COMPARE is not part of the likelihood principle even as it is stated by

Forster and Sober; it requires an additional argument, and the additional

argument given is mathematically flawed, as shown above. Secondly, even

if we allow COMPARE, we still have a small non sequitur: it follows

from Forster and Sober’s argument that the likeliest hypothesis must be a

parabola, but it may also be a straight line. (If c is 0 then y = a+bx+cx2+u is

both a parabola and a straight line, according to mathematical convention.)

Hence it is not “almost certain” that the best parabola will be more likely

than the best straight line, although it is certain that it will be at least as

likely.

Despite those quibbles, we should take some note of criticism 2. After

all, some (although I think very few) proponents of the likelihood principle

do accept COMPARE (separately from the likelihood principle). Also,
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the “almost certain” clause does apply in some situations. So criticism 2

does have some force; but it is not a criticism of the likelihood principle

and, as I have shown, the likelihood principle is important and should

not be maligned merely because it bears a superficial resemblance to the

law of likelihood. Thus, the likelihood principle is saved; but to avoid a

Pyrrhic victory I will conclude my response to Forster and Sober by saying

something about how the likelihood principle can be used in the absence of

COMPARE.

CANWE DO INFERENCE IN THE ABSENCE OF COMPARE?

Forster and Sober might argue that COMPARE is indispensable for in-

ferring anything about composite hypotheses, and hence that there is no

point in promulgating a likelihood principle which is incompatible with it.

In this section I will briefly discuss the alternatives to COMPARE. I will

also give an exceedingly brief case study.

The most obvious way to choose between models is a Subjective

Bayesian one. The problem which COMPARE addresses is the assignment

of likelihoods to composite hypotheses. The Subjective Bayesian uses

her beliefs about the particular matters at hand to decide how composite

hypotheses relate to their simple components. Specifically, she uses these

beliefs in the form of a prior probability function, as a way of determining

a weighted average over the various member hypotheses of each model.

Forster and Sober reject this Bayesian move, but their rejection is

based on a mathematical error, as I mentioned above. In any case, one

need not be a Subjective Bayesian in order to have alternatives to COM-

PARE. A non-subjectivist can still take a leaf out of the Bayesian’s book
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and use domain-specific synthetic considerations to decide how to assign

likelihoods to composite hypotheses. Examples of this way of working

include the many applications of Bayesian mathematics by objectivist non-

Bayesians, especially so-called “Empirical Bayes” methods in biostatistics

(Breslow 1990, Morris 1983).99

Let me sketch a case study of how one might apply the above rea-

soning to choose between a parabola and a straight line in the absence

of COMPARE. Suppose that amateur astronomers observe a small body

moving through the upper atmosphere. Suppose that their observations

are not well enough calibrated to determine the body’s speed nor its exact

trajectory, but that its path appears to be roughly but not exactly a straight

line. Then an analysis of the data could model the body’s trajectory as a

straight line or as a parabola, just as in Forster and Sober’s example. The

body could be a large meteor, in which case it is best modelled using hy-

potheses consisting of various straight lines (because meteors move very

fast and hence in approximately straight lines). In this case, deviations

from straightness would be best modelled as observational error. Alter-

natively, it could be a ballistic missile moving more slowly, in which case

its path is best modelled as a parabola. A non-COMPARE consideration

might be that amateur astronomers are unlikely to notice something as

small as a missile, while they are much likelier to notice a large meteor.

The notion of “unlikely” at work here can be an informal one, taking into

account any cogent but non-mathematical considerations: for example, it

might be thought that there are nomissiles big enough to be widely noticed

99. Empirical Bayesmethods are so-called because they usemathematical tools superficially
identical to Bayesianmathematics. They are, arguably, not Bayesian in the philosophical sense,
and are certainly not subjectivist (Deely & Lindley 1981, Bernardinelli & Montomoli 1992).
See chapter 3 for further discussion.
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unless a newmissile has been developed in secret, and that possibilitymight

be thought unlikely, for no formally specifiable reason. Alternatively, the

measure of unlikeliness might depend on the average likelihood of noticing

a small body, averaged over the various linear hypotheses (meteors) and

judged to be large compared to an average over the various parabolic hy-

potheses (missiles). Either way, this is not an application of COMPARE,

which would tell us to take into account only the single likeliest hypothesis

on each model.
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— 10 —
Is the Likelihood Principle Unclear?

This chapter and the next two examine objections which apply to the

likelihood principle as I have stated it (as opposed to the objections which

apply only to misreadings of the likelihood principle which I dealt with in

the previous chapter). This chapter looks at objections which claim that

the likelihood principle does not make sense. The next chapter, chapter 11,

considers objections which are based on conflicts between the likelihood

principle and other principles and practices, including cases in which the

likelihood principle seems at first sight to lead to incorrect analysis of

specific statistical models (models which are known in the literature as

counter-examples to the likelihood principle) which, supposedly, can be

analysed better by applying other methods. Finally, in chapter 12, I will

consider miscellaneous other objections to the likelihood principle. The

division between these three chapters is not meant to be important; I make

it primarily to keep each chapter short.

Some of the criticisms of the likelihood principle presented here are

valid when applied to earlier versions of the principle. I will not try the

reader’s patience by listing for each objection the versions of the principle

for which it succeeds and the versions for which it fails, because when

earlier versions have been defeated by objections it has been in relatively

uninteresting ways. Each of the earlier versions has some degree of slop-

piness in its statement of its conditions of applicability, and it is this which

has made it vulnerable. I have already catalogued the dimensions of this
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sloppiness in chapter 8, and it would be redundant to revisit each dimen-

sion in this chapter. Instead, I will compare each objection to my new

version of the likelihood principle. This version (which I concocted in

chapter 8) agrees in spirit with all earlier versions of the principle (except

for the Group III version of Forster and Sober) while tightening up the

conditions of applicability. I wish to show that this new version survives

all the objections which have been levied at earlier versions.

Some of the objections which I will consider turn on the incompati-

bility of the likelihood principle with some currently standard Frequentist

method of statistical inference. Such objections, in the forms in which they

appear in the literature, tend to hide the fact that they turn on the mutual

incompatibility of the likelihood principle and Frequentism; as we will see,

it is often silently assumed that if the likelihood principle were true it would

be compatible with Frequentist inference. Typically, this is put together

with substantive considerations of some other sort, which are displayed

as the ostensible subject of the objection, and inconsistencies are seen to

follow, from which it is concluded that the likelihood principle is false.

In organising the discussion of objections of this sort, I have had to

choose between A stating all such arguments as a single objection and B

stating each separately. I have chosen route B, partly because it follows

the organisation of the literature, but mainly because route A would have

been unenlightening. It is well known that the likelihood principle is

incompatible with Frequentist methods; this claim is neither surprising

nor helpful. Frequentist methods correspond to analysing Table 1 by rows,

while likelihood methods correspond to analysing it by columns. I show in

detail, in many places in this thesis (especially chapter 7 and chapter 15),
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that these two approaches to statistical inference arise from fundamentally

different motivations and are fundamentally incompatible. Demonstrating

a specific incompatibility with Frequentism cannot therefore be considered

an objection to the likelihood principle. Blaming such incompatibilities on

the likelihood principle simply begs the question of which we should prefer:

Frequentist inference or the likelihood principle. This thesis as a whole

(especially chapter 7 and chapter 13) is an answer to that question. It

would be unhelpful to give a necessarily condensed version of the whole

thesis as the answer to the objection that the two are incompatible (route

A). On the other hand, route B will prove to be interesting, as I uncover

the fundamental objection that the likelihood principle is incompatible with

Frequentism from apparently unrelated objections. Once I have uncovered

this as the sole source of the objection (by considering the substantive

issues in each case), I will of course repeat that the likelihood principle is

not shown to be false by its incompatibility with a method (Frequentism)

which I have already devoted a whole chapter (chapter 7) to undermining.

This chapter is mostly concerned with the objection that the likeli-

hood principle does not make sense, because either the hypothesis space

or the likelihood function (or both) is not well defined. There is no com-

parable objection that the sample space may not be well defined, because

the likelihood principle does not rely on the existence of a sample space:

the reader may recall that this is one of its advantages over Frequentist

principles.
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1. OBJECTION 10.1
THE HYPOTHESIS SPACE IS NOTWELL DEFINED

Lane (Berger & Wolpert 1988, pp. 176–178) objects that there are three

possible definitions of h, each of which leads to major problems for the

likelihood principle. The following list is quoted from (Berger & Wolpert

1988, pp. 176–178), but with Lane’s variables relabelled to match mine, so

that his (X ,Θ, {Pθ}) becomes my (X ,H , p).

The possible definitions of h which Lane canvasses are:

1. h is the distribution p;

2. H is an abstract set and h merely indexes the distribution ph ;

3. h is a possible value for some ‘real’ physical parameter, and p is to be

regarded as the distribution of the random quantityX should h be the

true value of that parameter.

These options require some explanation; and then we will see that Lane’s

objections to each of them is right but that he has missed a better option.

1. Option: “h is the distribution p”

Explanation: Each hypothesis h consists solely of a probability dis-

tribution.

Objection: Proofs of the likelihood principle (including mine) make

use of “mixed experiments” consisting of one merriment followed by

another. But these mixed experiments do not have the same prob-

ability distribution as either of the simple experiments that they’re

constructed from. A typical mixed experiment has observations of

the form (j , xj ), a cross-product which cannot be described by the

same probability distribution as the one that describes observations
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of the form xi , if only because there are more possible observations in

the mixed case as in the simple case (if we are dealing with discrete

distributions; otherwise the mismatch is not in size but in dimension-

ality). So the weak conditionality principle, which describes mixed

experiments of the general form (X ⊗ 2, h, p), is using h in a context

in which it cannot possibly be applied.

This objection is correct, strictly speaking. The obvious riposte is that h

is meant to apply just to part of the mixed experiment. That too fails to

work, strictly speaking, so long as the mixed experiment is described as

(J ⊗X , h, p). When we get to my final solution to Lane’s objections, I will

give a precise way to avoid this problem; but already we are nearly there.

2. Option: “H is an abstract set and h merely indexes the distribution

ph”

Explanation: H is the set {1, 2, 3, . . . n}, telling us which member

of a set of distributions {p1, p2, p3, . . . pn} we should use.

Objection: In that case, we could apply the likelihood principle to

any two merriments so long as they had the same number of possible

outcomes. But then the principle would no longer be plausible. For

example, we consider amerriment inwhichwe examine a humanblood

sample, and another in which we examine the Soviet flag. We might

then ask what colour our object is. On receiving the answer “red”,

which has likelihood 1 in both experiments, the likelihood principle

would tell us to draw the same conclusions about the world from

either one.
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This objection is also correct. h cannot be merely an index applicable

equally to any set of probability distributions.

3. Option: “h is a possible value for some ‘real’ physical parameter, and p

is to be regarded as the distribution of the random quantity X should

h be the true value of that parameter.”

Explanation: h is the probabilistic equivalent of a truthmaker for the

probability distribution p.

Objection: It is unclear what these underlying properties might be.

Lane gives the example of a coin toss: in using the likelihood principle

in such a case, one would have to be a realist, non-pragmatist believer

in propensities in order to think that there is an underlying real

physical parameter.

This objection is almost certainly correct, bearing inmind the great variety

of uses of the likelihood principle. Even if the world contains propensities,

there would have to be a separate propensity underlying every useful

probabilistic statement that a scientist can make. Since that is contrary

to standard propensity theories, I will not investigate that possibility any

further; instead, I now come to my proposed alternative to which none of

Lane’s objections apply.

4. h is none of the above. h is any one of the various equivalent statements

of a hypothesis by the community of people who understand that

hypothesis.

One can construct cases in which this idea is difficult to apply; and this

problem forms one of the main limitations of the likelihood principle. But
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in the sort of Kuhnian normal science which I have primarily set out to

examine, this option is completely unproblematic. Moreover, it is very

similar to Lane’s option 1: according to my option 4, h directly tells us

which distribution p to use; but h does not actually consist of p. This

distinction serves as a precise way to avoid the problem I noted under

Lane’s objection 1. It is true, as Lane says, that if h was p it would be

wrong to use it directly in the mixed experiment O∗ = (J ⊗ X , h, p∗),

if only because it would have the wrong size (or, in the continuous case,

dimensionality). But if h is a scientific hypothesis which tells us what p is,

it is perfectly straightforward for it to also tell us what p∗ is in the mixed

experiment.

It is not surprising that the distinction between options 1 and 4 has

escaped Lane’s notice, because in many cases the most natural way for a

scientist to write down a hypothesis h is actually to write down p! But

she does not mean h as a purely mathematical object, equal to everything

it’s isomorphic to100 (or, if she does, I don’t, when I use it in an instance

of the likelihood principle). Rather, she means h as a linguistic direction

for obtaining probabilities — in which guise it is easily used in mixed

experiments, with a flexibility only limited by the natural language in

which the scientist is working.

Earman, in his book on Bayesianism (p. 35), comes to the conclusion

that this is how Bayesian statisticians operate: they assign “probabilities

100. If the reader has any doubt about this, consider a scientist who says, “I have the most
excellent hypothesis about temperature inversions over LosAngeles. It is . . . [some convoluted
equation].” What would we make of a scientist who replies by saying, “My hypothesis about
the distribution of temples in Angkor Wat is also . . . [the same convoluted equation].” We
would say that these two hypotheses are related in an interesting way; but we would not say
that they were the same hypothesis. We would distinguish between my option 4 and Lane’s
option 1, and we would prefer option 4.
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to objects that express propositions, namely sentences”. Earman comes

to this conclusion not as a solution to Lane’s problem (which he does not

consider) but as the most reasonable explication of how scientists actually

work. My own point is normative rather than descriptive, but a little

descriptive support does it no harm.

2. OBJECTION 10.2
THE LIKELIHOOD FUNCTION IS NOT

WELL DEFINED

SomeBayesians have argued that Bayesianism does not imply the likelihood

principle, on the grounds that there is no such thing as an isolated likelihood

function (Bayarri et al. 1987). They argue that in a Bayesian analysis there

is no principled distinction between the likelihood function and the prior

probability function. A related possible assertion which I will consider

at the same time is that the likelihood function fails to be well defined

for non-Bayesians also, although this latter form of the objection does not

appear in the literature.

This objection is motivated in the literature by the fact that Bayesians

generally reject the idea that the likelihood principle is useful on its own,

because (they say) we need prior probabilities in order to apply the like-

lihood principle; and once we have admitted the universal necessity of

using prior probabilities (they say) we will no longer need to separate the

likelihood function from the prior (Bayarri et al. 1987, Berger & Wolpert

1988). Thus, they accept proofs of the likelihood principle, conditional on

the assumption that a likelihood function has been specified; but they deny

that specifying a likelihood function is necessary, and they deny that it is
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possible to do so in a principled way. Thus, they believe that the likelihood

principle is true, if stated carefully, but not straightforwardly applicable.

Despite decrying the applicability of the likelihood principle in this

way, Bayesians in this school see it as a useful weapon with which to combat

Frequentism. I like to think of this view as Bayesian Hegelianism, as it

sees the likelihood principle as an important part of a historical dialectic

which will inevitably lead to a synthesis in which it is no longer required.

Such a prediction has been beautifully summarised by Bayarri, DeGroot

and Kadane, following a metaphor proposed by Butler (1987, p. 21):

The [Frequentist] Cheshire Cat vanished quite slowly, first the
tail and then the body of frequentist methods. The last visible
part was the likelihood [principle] grin, “which remained some
time after the rest of it had gone”. But that, too, disappeared.

(Bayarri et al. 1987, p. 27)

To return to the objection itself: the claim is that there is no principled

definition of the likelihood function because there is no principled way of

deciding what should be labelled x (data) and what should be labelled h

(hypothesis) in the definition of the likelihood as p(xa|h).

Bayarri, DeGroot and Kadane’s examples all involve the following

set-up. (Throughout this section I replace Bayarri, DeGroot and Kadane’s

y by xa, x by y, θ by ψ, and f by p, in order to remain consistent with the

terminology of chapter 2.)

Suppose that the random variable Y is not observed but an-
other random variable X is observed with conditional density
p(xa|y,ψ). [Then] it is irrelevant which of the factors on the
right-hand side [of
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p(ψ, y|xa) =
p(xa|y)p(y|ψ)p(ψ)∫

p(xa, y,ψ)
]

are regarded as part of the [likelihood function] and which are
regarded as part of the prior distribution.

(Bayarri et al. 1987, pp. 6–7)

This is correct: although elsewhere I have presented the Bayesian method

as if it distinguished between the likelihood function and the prior prob-

ability function, mathematically speaking such a distinction is not needed

once the above equation has been specified. In contrast, we do have to dis-

tinguish the likelihood function in order to apply the likelihood principle.

Three natural choices are p(xa|ψ), p(xa, y|ψ) and p(xa|y,ψ) [≡ p(xa|y)], but

there is no natural way to choose between these three possibilities . . . or

so Bayarri, DeGroot and Kadane claim.

The problem for the likelihood principle, as thus stated, is very easily

solved. One need merely specify what one means by “likelihood function”.

I have already done this, in chapter 2: for me, the likelihood function is

always p(xa|y,ψ). As Berliner (1987, p. 19) correctly notes, the likelihood

principle “applies equally well, though separately, in each of the potential

cases [which Bayarri, DeGroot and Kadane] enumerate”, so my solution

is perfectly adequate, as would be any other solution which serves to

disambiguate the term “likelihood function”.

However, it may appear that a problem remains, since others may

disambiguate the likelihood function differently from me. For example,

Bayarri, DeGroot and Kadane imagine a case in which two doxastic agents

see the same observation, and analyse it using the same mathematical

model except that one of them introduces an unobserved variable y into
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the model while the other does not. This leads the two agents to define

the likelihood function in different ways, following which they cannot use

the likelihood principle to compare their results.

To see that my version of the likelihood principle still applies, we have

only to note that these two agents are using different hypothesis spacesH :

for one of them,H includes a specification of an unobserved variable, while

for the other it does not. Given a fixedH (which is an explicit precondition

of my version of the likelihood principle), only one likelihood function is

possible, namely p(xa|h ∈ H ). (Note that they agree on xa; otherwise no

joint analysis of any sort would be possible.) A merely practical problem

remains if neither of the two agents accepts the other’s parameterisation

of the hypothesis space, but there is no reason why this should happen,

since the two parameterisations essentially agree with each other (more

precisely, one parameterisation is easily reducible to the other by taking a

marginal distribution with respect to y).

My reply to this objection is essentially the same as a reply due to

Berliner. He states his definition of the likelihood function as follows:

The [likelihood function] is that function of the quantities of
interest which is the carrier of the information concerning those
quantities provided by the observed variables.

(Berliner 1987, p. 19)101

101. Berliner’s definition, unlikemine
(
p (xa|h ∈ H ), for some fixed H

)
, makes the problem

of specifying the likelihood function seem worse than it is. We do not need the apparently
vague term “carrier of the information”; all we need is a unique specification of the hypothesis
space.
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Berger and Wolpert agree that definitions of the likelihood function such

as mine and Berliner’s solve the problem posed by Bayarri, DeGroot and

Kadane.102

Berger and Wolpert give a different reply to the current objection.

This reply functions as a wicket-keeper for my purposes: I think it is right

but less helpful than the replies I have given above, and hence best ignored

by those who find the replies I have already given convincing. For the as

yet unconvinced, the third reply runs as follows:

[We] view [this point] as tangential to the LP [likelihood prin-
ciple]. The LP leaps into action after [the likelihood function
has] been defined, and X = [xa] observed. The process of get-
ting to this point is inherently vague and rather arbitrary; but
that doesn’t alter the fact that, having reached this point and
assuming that the model is correct, all information about θ . . . is
contained in [the likelihood function] for the given data.

(Berger & Wolpert 1988, p. 39)

To see that Berger andWolpert’s reply is right, it is only necessary to look

at the likelihood principle as I have worded it in chapter 8. The assumption

102. These authors note (correctly) that such solutions may be misleading, since my defi-
nition of the likelihood function for the purposes of applying the likelihood principle is not
always the best definition for the purposes of maximum likelihood estimation (defined in
chapter 5) (Bayarri, DeGroot & Kadane 1987, pp. 7–8; Berger & Wolpert 1988, p. 39). This
is of course irrelevant to the work of this thesis since the only use I make of my definition is
to defend the likelihood principle, but it should be borne in mind in the unlikely event that
my definition is adopted widely. It is also relevant to anyone who thinks that the method of
maximum likelihood is uniquely defined. This may be a problem for advocates of inference to
the best explanation.

An alternative reply to Bayarri, DeGroot and Kadane’s problem, due to Butler (1987,
p. 21), is to define the likelihood function relative to the “model and inferential aim” of the
agent. In some cases this may yield a different likelihood function from mine, but this raises
no inconsistencies because the likelihood principle applies (separately) to both likelihood
functions. Butler’s definition is better suited than mine to maximum likelihood estimation,
but I do not adopt it because it is open to a charge of excessive subjectivity (at least prima
facie).
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that the likelihood function has been defined before the likelihood princi-

ple becomes applicable is simply my Well Defined Likelihood Function

assumption.

3. OBJECTION 10.3
THE LIKELIHOOD PRINCIPLE IS UNIMPORTANT

BECAUSE IT DOES NOT TELL US HOW
TO PERFORM STATISTICAL INFERENCE

This objection is suggested by (Berger & Wolpert 1988, p. 2).

It is true that the likelihood principle does not tell us how to perform

statistical inference; it only tells us how not to. However, since the ways

in which it tells us not to include almost all of the commonest statistical

methods (namely, Frequentist methods), it is important. In addition, my

case study in chapter 15 shows how the likelihood principle can at least

suggest, if not mandate, promising statistical methods.

In the next chapter, Imove on fromobjections to the clarity of the likelihood

principle to objections based on conflicts between the likelihood principle

and other principles, including cases inwhich the likelihood principle seems

at first sight to lead to incorrect analysis of specific statistical models.
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— 11 —
Conflicts With the Likelihood Principle

This chapter discusses objections which are based on conflicts between the

likelihood principle and other principles and practices.

1. OBJECTION 11.1
THE LIKELIHOOD PRINCIPLE UNDERMINES
STATISTICS AS CURRENTLY PRACTISED

By far the most influential argument against the likelihood principle is

hinted at more often than stated, and is rather unphilosophical in nature.

This most influential of arguments is that statisticians successfully make

inferences from data to hypotheses using Frequentist methods which con-

tradict the likelihood principle. Thus, it is claimed, regardless of what is

wrong with the likelihood principle, something must be, for it rules out the

use of exactly the methods that seem to be most successful. A rare explicit

statement of this objection is in (Mayo 1996, p. 362).

I have three and a half answers to this objection.

Firstly, the likelihood principle does not entail that the conclusions

drawn by Frequentist methods are wrong; it only entails that statisticians

can do better than to choose methods on the basis of their Frequentist

properties. It therefore does not rule out any token statistical procedures,

only methods for choosing procedures. Incorrect methods for choosing

procedures may, as it happens, have chosen good procedures. I do not
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have space to discuss whether this is really plausible; I offer it in order

to question where the burden of proof lies rather than as a knock-down

answer to the objection.

Secondly, and more importantly, I deny that Frequentist methods are

generally successful. The reasons why we might think they are successful

are twofold: that they are successful in their own terms, instantiating as

they do guaranteed low error rates; and that applied science, which rests

on Frequentist methods, produces successful technology.

But if Frequentist methods are successful in their own terms that

proves nothing about whether the Frequentist way of evaluating inference

procedures is the one we should use.103 And that Frequentist methods

produce successful technology, while it shows that Frequentist methods

are not sufficiently bad to entirely disrupt technological progress, does not

show that they are generally successful, nor that they are more successful

than the alternatives.

This brings me to my final answer to the objection, namely that it

only succeeds if the alternatives to Frequentist methods are unsuccessful.

I am not aware of any empirical reasons to think that Bayesian methods

(for example) are unsuccessful. On the contrary, in chapter 15 I present a

prima facie successful use of Bayesian methods to solve a problem to which

Frequentist methods offer only an impractical solution. Moreover, in the

103. It is also false that Frequentist methods are generally successful in their own terms,
as they guarantee that both type I error and type II error will be small only if sample sizes
are large and measurement error is fully modelled, neither of which caveats is commonly
observed. The most obvious cases in which these caveats are broken are in psychometric
research, in which sample sizes of under 20 are the norm and in which questionnaires which
are known to correlate very badly with the mental states which they purport to measure are
treated as if they had no measurement error at all. But I do not claim to have conclusively
demonstrated the falsity of the claim that Frequentism is successful in its own terms: that
would require an unmanageably large survey of the uses of statistical inference. So I count
this as only half an answer to the objection.
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few areas in which Bayesian methods are the norm (for example, analysis of

noisy digital images, and email spam filtering) they appear to be admirably

successful.

2. OBJECTION 11.2
THERE ARE COUNTER-EXAMPLES
TO THE LIKELIHOOD PRINCIPLE

A counter-example to the likelihood principle is, of course, any case in

which two likelihood functions are derived from a situation fitting within

the conditions of applicability of the likelihood principle, and are propor-

tional, and yet ought to lead to different conclusions. I deny that there

are any such cases. I present the supposed counter-examples which have

appeared in the literature and explain why the two likelihood functions in

question need not lead to different inferences.

OBJECTION 11.2.1
FRASER’S EXAMPLE

A form of this example was first suggested in (Fraser 1963, pp. 642–

643). I will give an example from (Evans et al. 1986, pp. 186–187) which

is essentially similar but which has been discussed more widely in the

literature.

Consider [X ] = {1, 2, . . . }, and let the distribution for [X ] be
uniform on {bθ/2c, 2θ, 2θ+1}, where bsc is the greatest-integer
function except that b 12c is taken to be 1.

(Evans et al. 1986, pp. 186–187)
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In otherwords, for some parameter θ, the probability of observing anything

except bθ / 2c, 2θ or 2θ + 1 is zero, while the probability of observing each

of those three options is 13 .

Probably the only way to understand this example is to draw the

following table of values of p(x|θ).

x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 . . .

θ = 1 1
3

1
3

1
3 0 0 0 0 0 0 · · ·

θ = 2 1
3 0 0 1

3
1
3 0 0 0 0 · · ·

θ = 3 1
3 0 0 0 0 1

3
1
3 0 0 · · ·

θ = 4 0 1
3 0 0 0 0 0 1

3
1
3 · · ·

θ = 5 0 1
3 0 0 0 0 0 0 0 · · ·

θ = 6 0 0 1
3 0 0 0 0 0 0 · · ·

θ = 7 0 0 1
3 0 0 0 0 0 0 · · ·

θ = 8 0 0 0 1
3 0 0 0 0 0 · · ·

θ = 9 0 0 0 1
3 0 0 0 0 0 · · ·

...
...

...
...

...
...

...
...

...
...

Table 4

Note that the table is symmetrical in x and θ.

Evans, Fraser and Monette continue:

For a given [x], the likelihood function is flat on three possible θ
values[.]

This is clearly right. In any given column, there is nothing to choose

between the three values of θ which have non-zero probability. This is the
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only conclusion compatible with the likelihood principle, which says that

our inferences can depend on x only via the likelihood function. Hence,

from the likelihood point of view, once xa is observed each of three values

of θ is equally well supported. But:

an examination of the probability matrix shows that choosing
the smallest of the three possible θ-values provides a confidence
procedure at level 23 , that is, one of the three θ-values (each with
the same likelihood) is a 2-to-1 favourite.

(Evans et al. 1986, p. 187)

The table shows that this is right too. Suppose we fix θ at 2, for example.

The values x = 4 and x = 5 are twice as likely, put together, as x = 1.

So any policy which gets θ right when we observe x = 4 and when we

observe x = 5 is twice as good as one which only gets θ right when we

observe x = 1. And the same is true for any value of θ: for any value

of θ, a policy which gets θ right when we observe one of the two larger

x values compatible with the θ in question is twice as good as one which

only gets θ right when we observe the smallest of the x values. Now, the

proposed policy of choosing the smallest plausible θ for a given x is just

such a policy. Suppose once again that θ is actually 2. If we follow the

proposed policy, we will get θ right in 2/3 of the plausible cases (when we

observe x = 4 or x = 5); and similarly for any value of θ. Since one value

of θ is right (according to the model), even though we do not know which

one, and since this policy is apparently such a good policy for any fixed θ,

we should (Evans, Fraser and Monette imply) adopt this policy. Once we

have observed xa, we should estimate θ as the smallest of the three values

compatible with the observation.
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Andyet estimating θ according to this policy contradicts the likelihood

principle which, as we have already seen, says that for any observed xa

all three plausible values of θ are equally well supported. (We may not

choose the best-supported θ, because of our prior probabilities or other

considerations, but that is orthogonal to what is at issue in this example.)

An easy solution to this problem would be to note that Evans, Fraser

and Monette’s analysis begs the question of whether we should take any

notice of Frequentist evaluations of the proposed procedure. After all, we

already know that the likelihood principle is incompatible with Frequentist

analysis in many cases, and strictly speaking this is all that the example

tells us. It is not news. However, the example shows a case in which our

intuitions are particularly likely to pull both ways. It may well seem to

the reader that in this particular case we ought to opt for the policy which

Evans, Fraser and Monette recommend. In order to show that even in this

sort of case — perhaps the worst possible case for the likelihood principle,

from the point of view of clashes of intuitions — the likelihood principle

is still clearly right, I will criticise Evans, Fraser and Monette’s proposed

method of estimating θ directly, instead of relying on the general criticisms

I have already made of Frequentist methods.

I would like to open my criticism of Evans, Fraser and Monette’s

analysis of this example with a story:

the teacher asked her to imagine she was an Eskimo walking
across the North Pole when she was suddenly attacked by a huge
polar bear.

‘What would you do?’ the teacher asked.
‘I’d throw a spear at him,’ the girl answered.
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‘And what would you do if a second polar bear appeared?’
the teacher asked.

‘I’d throw another spear at him.’
‘And what if a third and a fourth and a fifth bear attacked?’
‘I’d throw three more spears,’ the girl answered.
Then the teacher said, ‘Hang on, where are you getting all

the spears from?’
And the girl said, ‘The same place you’re getting all the

polar bears.’
(Ball 2001, pp. 18–19)

The moral of this parable is that we should ask where Evans, Fraser and

Monette are getting their infinite list of values of x from. (The same place

as the spears?) Each x must be finite since it is a member of the real

numbers and, moreover, if the list comes from any physically describable

source then the length of the list must be finite and hence x must have

an upper bound. This is so even if the list comes from a physical source

which is in principle unbounded, because epistemic agents such as humans

can only explicitly list a finite number of quantities before dying of old

age. One could argue that we may well not know what the bound on xis,

and hence that the table above is a reasonable representation of our state

of knowledge about x. That seems fair enough. But since nevertheless x is

bounded, albeit at a possibly unknown bound, let us represent the bound

by B and see whether we can draw any conclusions which are valid on

any (finite) value of B. It will turn out that we can, because Evans, Fraser

and Monette’s analysis turns on the possible values of x being literally

unbounded, not merely bounded by an unknown bound.

Have another look at the table, this time cutting it off at x = B. I will

draw this as if B were 3, although we can imagine it to be as big as we like
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just as long as it is finite. Omitting rows in which all the values are zero

(i.e., rows in which θ > 7), the table looks like this:

x=1 x=2 x=3

θ = 1 1
3

1
3

1
3

θ = 2 1
3 0 0

θ = 3 1
3 0 0

θ = 4 0 1
3 0

θ = 5 0 1
3 0

θ = 6 0 0 1
3

θ = 7 0 0 1
3

Table 5

Now the policy of choosing the smallest θ for the observed xa is no longer

sensible. Recall that the justification for the policy was that it was on to a

good thing for any fixed θ. But this is no longer the case. If θ is 1 then the

policy is still good, for it gets θ right on any of the three values of x. But

if θ is anywhere from 2 to 7, the policy is guaranteed to get θ wrong.

This argument works for any value of B: imagining the table to be

larger shows that for any finite value of B the Frequentist error rate of

the proposed procedure is 13 or less for most values of θ. So this supposed

counter-example to the likelihood principle fails, provided only that x has

some bound, however large.

An analysis similar to this is given by Hill in (Berger & Wolpert

1988, pp. 167–171), although Hill uses decision-theoretic analysis where

I stick strictly to an inferential analysis with no mention of utilities or

326



loss functions. Other authors such as Berger & Wolpert (1988) give an

analysis of the example which solves the problem on the assumption that

Bayesianism is right, which seems to me to miss the point of the objection.

OBJECTION 11.2.2
EXAMPLES WHICH RELY ON IMPROPER PRIORS

Recall that improper priors are prior probability functions which do not

sum to 1 over the hypothesis space. The likelihood principle is incompatible

with such functions, in the sense that the joint use of the likelihood principle

and improper priors can lead to inconsistent inferences, as I will illustrate

in a moment.

In the literature, this objection is sometimes phrased in a much more

aggressive way, by saying that the likelihood principle is wrong simpliciter

and by supporting that claim with examples which demonstrate that the

likelihood principle leads to incoherence in plausible inference scenarios. I

collect here a number of such scenarios which depend on the use of Bayesian

methods with improper prior probability functions. I will admit that these

scenarios lead to incoherence; but I will exonerate the likelihood principle

by arguing that improper priors are illicit.

The following supposed counter-example to the likelihood principle

is adapted from (Stein 1962).

Suppose a statistical experiment has two possible measurements, x

and y, with x ∈ X = (−∞,∞) such that

X ∼ Normal (θ,σ2)

and y ∈ Y = (0, bθ) such that
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p(y|θ) = c
y
e−

1
2 d

2(1− θ

y
)2

where σ is known, c is the normalising constant

c =
1∫ 1

y e
− 1

2 d
2(1− θ

y
)2dy

,

d = 50 and b = 1010
1000

.

Now suppose that we observe either xa = σd or ya = σd . Then for

all θ, p(xa|θ) ∝ p(ya|θ) except for a term in y / b, which is negligible since

b is so large. In other words, xa generates practically the same likelihood

function as ya. So, according to the likelihood principle, we must draw

the same conclusions about an experiment which observes xa as about one

which observes ya.104

Stein observes that the following interval is a 95% Neyman-Pearson

confidence interval for θ:

(
xa − 1. 96σ, xa + 1. 96σ

)
and so, by the likelihood principle, the following interval must also be a

95% Neyman-Pearson confidence interval for θ:

(
ya − 1. 96

y
d
, ya + 1. 96

y
d

)
.

And yet the (Frequentist) probability of y falling into that interval on

repetitions of such an experiment is less than 1
10100 . So the likelihood

principle has caused us to produce an unsatisfactory Frequentist interval.

104. Or so Stein claims. I do not concede that the likelihood principle is always applicable to
likelihood functions which are merely approximately proportional to each other; but for the
sake of argument let us go along with Stein’s claim that it applies in this particular case.
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This only shows once again that the likelihood principle is incom-

patible with Frequentism, and so it is no real objection to the likelihood

principle. However, there is a troubling extension of Stein’s example due to

Basu. Suppose a Bayesian endorses the likelihood principle, and also holds

a flat prior probability function for θ. Then she must calculate the same

results as the Frequentist (numerically speaking; their interpretations of

the results may differ): she must give each of the above intervals a 95%

probability, and must also give a probability of less than 1
10100 to the second

interval (Basu 1975, p. 50, translated into the terminology of Berger &

Wolpert 1988, p. 134).

The Bayesian prior which leads to this difficulty is an improper prior

(one which does not integrate to 1), as recommended by Jeffreys (see

chapter 3). In order to fully defend the likelihood principle, I must therefore

give some independent reason for being wary of improper priors. I do this

in the following section.

Are improper priors satisfactory idealisations?

Commenting on the Stein example discussed above, Basu says:

Mathematics is a game of idealizations. We must however rec-
ognize that some idealizations can be relatively more monstrous
than others. . . . the super-idealization of a uniform prior over
the infinite half-line (0,∞) is really terrifying in its monstrosity.
Can anyone be ever so ignorant to begin with about a positive
parameter θ that he is (infinitely) more certain that θ lies in the
interval (C,∞) than in the interval (0,C) — and this for all fi-
nite C however large?! Naturally, everything goes completely
haywire when such a person, with his . . . all-consuming belief
in θ > C for any finite C, is asked to make an inference about θ
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by observing a variable Y which is almost sure to be at least 10
times larger than θ itself !

(Basu 1975, p. 52)

I would not like to endorse Basu’s piece of philosophy-by-exclamation-

mark as it stands, because it does not give us a clear reason to disallow

improper priors (only a reason to be unsurprised when they cause trouble),

but I would like to take on board Basu’s suggestion that Stein’s improper

priors are unsatisfactory idealisations of any epistemic agent’s situation.

Basu’s point is that an epistemic agent whose mental state is repre-

sented by an improper prior is one who believes that the probability of θ

falling in any finite region is zero; consequently (and unlike an agent with

a vague but proper prior) she must believe that θ has probability zero of

being around the same size as C; consequently, we should not be surprised

if her belief state cannot be rationally updated to take account of an event

which she counts as essentially impossible105, such as the observation of

Y > θ.

Berger and Wolpert claim that it is rational to use improper priors

as an approximation “[w]hen prior opinions are . . . reflected by a locally

noninformative prior (in the region ofΘ for which the likelihood function is

significant)” (Berger & Wolpert 1988, pp. 135–1366). This is tantamount

to saying that improper priors are reasonable whenever they are likely

(according to the model in use) to give similar results to a proper prior,

because regions ofX inwhich the likelihood function is small are unlikely to

105. One might respond to Basu that events with probability zero can occur, and hence are
not impossible. This may be true, but such events are only anticipated by an epistemic agent
when they fall in regions of a probability density function which have a non-zero measure, the
zero probability of the events themselves being an artifact of our representation of continuous
probability on a real axis. In contrast, the event which Basu’s epistemic agent cannot cope
with not only has zero probability itself but also occurs in a large region of zero probability.
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be observed. However, sometimes such a region is observed, and it would

not make sense to apply Berger and Wolpert’s reasoning retrospectively

in such a case; and therefore it would be dangerous to hold it as a general

principle. The Stein example rests on assuming that such a case is observed,

so the Stein example shows that Berger andWolpert’s suggestion can lead

to contradictory inferences.

Hill (Berger & Wolpert 1988, p. 167–171) argues in more generality

that improper priors can be used to approximate flat (but bounded) proper

priors whenever there is a physical limit on (the absolute value of) the size

of the possible observations which, arguably, is always.106 Hill’s argument

is not essential to my discussion, since I have no need to support the use of

improper priors; I mention it only to show, as a matter of separate interest,

that the debate on this issue is still open.

I conclude that Stein’s improper priors (in the mathematical sense) are

improper (in a normative sense). This disposes of any remaining worries

about Basu’s version of Stein’s supposed counter-example to the likelihood

principle.

The same reply as I have given to Stein serves to deal with other

examples in which an improper prior is shown to introduce difficulties into

a Bayesian analysis, such as a number of variations on Fraser’s example

(Goldstein &Howard 1991) and a well-known example due to Stone (1976)

which is occasionally proposed (although never by Stone himself, according

to his (1991)) as a putative counter-example to the likelihood principle. No

new philosophical issues are raised in these other examples.

106. As Hill points out, even if there are no limits on the sizes of parameters in nature there
certainly are limits on the sizes of physical quantities which finite epistemic agents can report.
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3. OBJECTION 11.3
AKAIKE’S UNBIASED ESTIMATOR IS

PREFERABLE TO THE LIKELIHOOD PRINCIPLE

Forster and Sober claim that a major goal of statistical inference is to

produce a model which is “predictively accurate”, in the sense that it makes

predictions which are good at predicting as-yet-unseen data. They note

that this is a big ask: “the predictive accuracy of a model depends on

what the true underlying distribution is. In making an inference, we of

course don’t know in advance what the truth is. [So] maximizing predictive

accuracy . . . so far . . . appears to be epistemologically inaccessible.” (Forster

& Sober 2004a, p. 160)

They then state that, despite this apparently knock-down argument

against the accessibility of predictive accuracy, “Akaike has shown that

predictive accuracy is epistemologically accessible” after all (and this claim

is repeated in (Forster 2002, Sober 2002a)) by demonstrating, under some

fairly mild statistical and epistemic assumptions,

that an unbiased estimate of a model’s predictive accuracy can be
obtained by taking the log-likelihood of its likeliest case, relative
to the data at hand, and correcting that best-case likelihood with
a penalty for complexity:

An unbiased estimate of the predictive accuracy of
model M = Log Pr[Data|L(M )] − k [where] k is the
number of adjustable parameters in the model

(Forster & Sober 2004a, p. 161)107

107. In fact, it is Akaike’s estimator (the function), not his estimate (a realised value of the
function) which is unbiased. There is no such thing as an unbiased estimate, as we will see.
The distinction between estimator and estimate will be particularly important in my reply to
objection 11.4.
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Foster and Sober do not give any further justification for caring about

Akaike’s estimator, so presumably they see its unbiasedness as the property

which should recommend it to us. Their reply to earlier criticism seems to

confirm this (Forster & Sober 2004b).

It then transpires that the use of Akaike’s estimator contradicts the

likelihood principle in some cases. This completes Forster and Sober’s

objection: in cases in which the two conflict, they say, we should prefer

Akaike’s estimator to the likelihood principle, and hence the likelihood

principle is false.

I will not attempt to show that Akaike’s criterion is unimportant,108

but I will rebut Forster and Sober’s reasons for thinking it can be used to

overrule the likelihood principle.

Forster and Sober’s criticism amounts to citing a Frequentist principle

which gives a different result from the likelihood principle. Of course that

is going to contradict the likelihood principle — Frequentist methods do,

as is well known. Why, though, should we just assume that the Frequentist

approach is right, as Forster and Sober do? I will give reasons to think that

the Frequentist approach is wrong in the particular use of it that Forster

and Sober make, which is to support the criterion of unbiasedness in an

estimator used for inference after the data have been observed.

As we saw earlier, Forster and Sober at first thought that “the predic-

tive accuracy of a model depends on what the true underlying distribution

is” and hence was not something we could know at the time of doing a

108. Having said that, it is easy to show that Forster and Sober’s use of Akaike’s criterion
cannot be the final word on statistical inference. This is because it cannot be right to imply
that the best estimate of a model’s predictive accuracy depends only on the properties of the
model’s likeliest case. This would mean that a maximally vague model which contains a true
case would count as predictively accurate even if the true case were effectively swamped in
the model by many dreadfully inaccurate cases.
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statistical inference. This is because the only way in which we can know

anything about predictive accuracy, over and above what the likelihood

function tells us about it (and over and above a Bayesian prior distribution,

for those who believe in such things), is if we already know the parameters

we are trying to estimate, in which case the statistical inference in ques-

tion is completely superfluous. But Forster and Sober were able to pull a

rabbit out of a hat: they discovered an unbiased estimator of the predictive

accuracy of an estimate which does tell us something over and above the

likelihood function. I will put the rabbit back into the hat. Forster and

Sober were right in the first place: we cannot know the predictive accu-

racy of our methods unless we know the truth about the parameters we

are trying to estimate.

Forster and Sober’s choice of Akaike’s criterion rests on the fact that

it is an unbiased estimator,109 but they do not give any reason for prefer-

ring unbiased estimators. A response which is obvious to anyone familiar

with the literature on Bayesian statistical inference is that lack of bias (in

the technical sense) gives us no reason to approve of an estimator. In

itself this perhaps does not bother Forster and Sober, because they are not

Bayesians, presumably because they distrust the prior probability distri-

butions required for Bayesian inference; but if we look at the reasoning

about unbiasedness which is commonplace in the Bayesian literature, and

which I outline below, we will see that the reasoning makes no use of prior

distributions, and that one need not be Bayesian to accept it.

The need to investigate unbiasedness will make my reply to Forster

and Sober rather long-winded. I will examine what unbiased estimators

109. In fact, contra (Forster & Sober 2004a), Akaike’s estimator is not generally an unbiased
estimator (Boik 2004, Forster & Sober 2004b), but it sometimes is, and to simplify the
argument I will pretend it always is.
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are, briefly look at how they are discussed in the literature, give arguments

against relying on them, and then give a theory tentatively explaining their

spurious appeal. (Of course this theory is not essential for my argument,

but it does make my conclusion more plausible: without it, it would seem

as if I were saying that the world had gone mad.)

THE DEFINITION OF AN UNBIASED ESTIMATOR

Any function θ̂which is used to estimate an unknown parameter θ is known

as an estimator of θ.

An estimator θ̂ is an unbiased estimator of θ if and only if

∫
θ̂(x)p(x|θ)dx = θ

where the integration is, of course, taken over the space of observations, X .

I cannot state my view of unbiasedness any better than it was stated

by Hacking in 1965, although I will give more detailed arguments for the

view than Hacking did.

It has quite often been proposed that estimators should be unbi-
ased, or at any rate that the best estimators are in fact unbiased.
The thesis is no longer as fashionable as it once was, probably be-
cause no good reason for it has ever been given. Notice that there
is not only no reason for believing that, in general, an unbiased
estimator will give a better individual estimate than some biased
estimator. There is also no reason for believing that in general
unbiased estimators are better on the average than biased ones.
For an estimator can on the average be persistently awful, but as
long as its errors are of opposite sign, it may still be unbiased,
and have an average estimate equal to the true value.
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. . . it might be true that some very good estimators are
unbiased, but this would be an incidental fact. We cannot use
unbiasedness as a criterion of excellence.

(Hacking 1965, pp. 182–183)110

Applied statisticians do often expect estimators to be unbiased. One reason

for this is that restricting attention to unbiased estimators is a convenient

way to cull an otherwise overwhelming field of possibilities. This is a

pragmatic consideration in the most superficial sense of the term. (Not

that this consideration is bad ; it is merely unimportant.) I will discuss later

another, psychological, reason why statisticians might prefer unbiased

estimators; but first I will consider whether there is some less pragmatic,

more strongly normative reason.

Neyman claimed that:

[t]he advantage of the unbiased estimates and the justification of
their use lies in the fact that in cases frequently met the probabil-
ity of their differing very much from the estimated parameters
is small.

(Neyman 1967, p. 259)

There are two problems with this justification. Firstly, it is simply false, if

“cases frequently met” is meant to include all the cases in which Neyman

and his successors recommend that we use unbiased estimators. Secondly,

it is not strong enough to justify Forster and Sober’s argument, which

requires that unbiased estimators are always desirable.

110. Hacking was writing several decades after the invention of unbiasedness, so the failure
of statisticians to provide a rationale for it was not a temporary oversight; nor was it an
oversight which has since been corrected, as we will see in a moment. Hacking’s view that
unbiasedness is no criterion of excellence was not new in the 1960s, and arguably the most
influential statistician ever, R. A. Fisher, saw no use at all for unbiasedness, despite supporting
almost every other criterion for statistical inference.
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Apart from Neyman, theoretical statisticians do — often — say that

unbiasedness is a desirable property in and of itself, but without ever saying

why. I am genuinely perplexed by this. The theoretical statisticians I am

thinking of are authors who are in masterful command of the mathematics

behind their assertions, so they are not omitting to mention any putatively

desirable properties of unbiased estimators through failure to understand

them . . . and yet they simply do not mention any such properties. I cannot,

of course, survey here the hundreds of books on the topic by reputable

statisticians, but I will quote briefly from two authorities on statistical

inference to give the flavour of the literature.

Kendall and Stuart on unbiasedness

Consider the sampling distribution of an estimator t . If the
estimator is consistent, its distribution must, for large samples,
have a central value in the neighbourhood of θ. We may choose
among the class of consistent estimators by requiring that θ shall
be equated to this central value not merely for large, but for all
samples.

If we require that for all n and θ the mean value of t shall be
θ, i.e. that

E(t) = θ,

we call t an unbiased estimator of θ. This is an unfortunate word,
like so many in statistics. The mean value is used, rather than
the median or the mode, for its mathematical convenience. This
is perfectly legitimate, but the term should not be allowed to
convey non-technical overtones.

(Stuart et al. 1999, pp. 4–5)
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I give arguments below for thinking that unbiasedness, E(t) = θ, is not

really a desideratum, followed by a speculative argument suggesting why

people might think it is. Note that Stuart et al. do not explicitly disagree

with me; they only say that this is one way of narrowing the class of

consistent estimators, which would otherwise be inconveniently large, and

they give no other justification for it at all. Indeed, they later give a reason

to think that unbiasedness is not a desideratum in general:

Our discussion in 17.8 shows that consistent estimators are not
necessarily unbiased. We have already (Example 14.5) encoun-
tered an unbiased estimator that is not consistent. Thus neither
property implies the other. . . . In certain circumstances, there
may be no unbiased estimator (cf. Exercise 17.12). Even if there
is one, it may be forced to give absurd estimates at times, or even
always.

(Stuart et al. 1999, p. 5)

When Stuart et al. discuss censoring (unavailable data), they note that

censoring makes it hard to preserve unbiasedness, and comment in this

context:

A user of statistical methods must decide upon the properties
considered desirable in an estimator and, for example, an overly
rigid insistence upon unbiasedness may lead to difficulties.

Nevertheless, the notion of unbiasedness has considerable
intuitive appeal and many would be reluctant to abandon it.

(Stuart et al. 1999, pp. 432)111

111. Stuart et al. also mention the concept of an “unbiased estimating equation”, due to
Godambe, which has some of the properties of unbiasedness but which is not affected by
censoring. Since this new concept is much more general than unbiasedness, I do not expect
that it would be able to play the role of unbiasedness in an alternative version of Forster and
Sober’s criticism of the likelihood principle. In any case, Stuart et al. present no justification
for the new concept but do say, rather inconclusively, that “[i]t may be argued that this revised
concept of unbiasedness gives away too much” (Stuart et al. 1999, pp. 432). So their discussion
on this point is unhelpful: I mention it only for completeness.
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Why does unbiasedness have intuitive appeal? We are not told here, nor

anywhere else that I can find in the literature. (The statistical literature is

far too vast to permit an exhaustive search, but I have searched hard.) I

will suggest an answer in a later section.

Casella and Berger on unbiasedness

[A] comparison of estimators based onMSE [mean squared error]
considerations may not yield a clear favorite. Indeed, there is
no one “best MSE” estimator. Many find this troublesome or
annoying, and rather than doing MSE comparisons of candidate
estimators, they would rather have a “recommended” one.

The reason that there is no one “best MSE” estimator is
that the class of all estimators is too large a class. . . . One way
to make the problem of finding a “best” estimator tractable is
to limit the class of estimators. A popular way of restricting
the class of estimators, the one we consider in this section, is to
consider only unbiased estimators.

(Casella & Berger 2002, p. 334)

The bias of a point estimatorW of a parameter θ is the difference
between the expected value of W and θ; that is, BiasθW =
EθW − θ. An estimator whose bias is identically (in θ) equal to
0 is called unbiased and satisfies EθW = θ for all θ.

Thus, MSE incorporates two components, one measuring
the variability of the estimator (precision) and the other mea-
suring its bias (accuracy). An estimator that has good MSE
properties has small combined variance and bias.

(Casella & Berger 2002, p. 330)

Casella and Berger partition the mean squared error of an estimator into

two components. One componentmeasures the variability of the estimator;
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this component is independent of the bias. The other component measures

its bias. Nowhere do Casella and Berger say why the bias is important, and

nowhere do they justify calling it “bias” or its inverse “accuracy”. They

might as well have called them “squiggle” and “squoggle”.

UNBIASEDNESS IS NOT A VIRTUE

So much for what the authorities say about unbiasedness. What should

we say about unbiasedness? We should say that, despite having a nice

mathematical symmetry, unbiased estimators can have wildly unacceptable

epistemological properties. Later I will explain how the nice symmetry

is compatible with the horrible epistemological properties; but first, let us

see what the horrible properties are.

Bernardo & Smith (1994) list four well-known epistemological rea-

sons against requiring an estimator to be unbiased, of which I quote two.

Of the other two, one, that sometimes there are no unbiased estimators, is

not relevant to Forster and Sober’s use of Akaike’s theory, while the other,

that “the unbiasedness requirement [makes] the answer dependent on the

sampling mechanism”, would make no sense without a long discussion to

disentangle various different types of dependence on experimental design,

since biased estimators suffer from the same problem unless we distinguish

cases very carefully.

(ii) . . . unbiased estimators may give nonsensical answers, and
no theory exists which specifies conditions under which this can
be guaranteed not to happen. For example, . . . if θ is the mean of
a Poisson distribution, Pn(x|θ) = e−θθx / x!, x = 0, 1, . . ., then
the only unbiased estimator of e−θ , a quantity which [cannot be
1 or 0], is 1 if x is even and 0 if it is odd . . . but—even more
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ridiculously—the only unbiased estimate of e−2θ is (−1)x , leading
to the estimate of a probability as −1 (for all odd x)!

So the only unbiased estimator available is often a value which the param-

eter cannot take according to the definition of the model; and sometimes

it is a value which the parameter cannot take on any model, as we can see

from the fact that a probability cannot be −1. These facts alone should be

enough to convince us that we need not feel pressured into using unbiased

estimators to estimate anything.

(iv) . . . unbiased estimators may well be unappealing if they lead
to largemean squared errors, so that an estimator with small bias
and small variance may be preferred to one with zero bias but a
large variance.

Point (iv) ought to be particularly telling for Forster and Sober, since they

refer to Akaike’s estimator as a measure of predictive accuracy. Its unbi-

asedness does not protect it from being an extremely inaccurate measure

of accuracy; and whether it is actually accurate or not in a given situation

is impossible to assess since (again) we do not know θ.

A further argument against unbiased estimators is that the mean of a

posterior probability distribution cannot be an unbiased estimator of any

unknown parameter (Casella & Berger 2002, pp. 368–369). For Bayesians

this is a knock-down argument. It is also a persuasive argument for those

of us who are not entirely subjectivist Bayesians but who believe that the

Bayesian mathematical machinery applies in at least some cases.

A typical response to the assertion that unbiased estimators are often

bad estimators is to accept the instances but reject the generalisation that

we should not care about bias. Here is a typical example of this move:
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Unbiasedness may not be a compelling property of an estimator:
there are certainly examples inwhich the best unbiased estimator
is terrible, and other examples where biased estimators more
than compensate for their bias through reduced [error rates].
However, substantial bias in the absence of such considerations
seems like a bad thing[.]

(Martinsek 1988, p. 58)

This move is always made (as far as I can find) without any good reason

being given for why we should care about bias. Martinsek is unusual in

giving any reason at all: he cites his own intuition, and the fact that many

laypeople agree with him. These arguments from authority might well

give us pause, but in the absence of any better arguments for unbiasedness

anywhere in the literature they do not bear much weight against Bernardo

and Smith’s substantial arguments.

So I claim that unbiasedness is no indication of a good estimator.

It follows that the unbiasedness of Akaike’s estimator is a bad card with

which to try to trump the likelihood principle. Since Forster and Sober

are claiming precedence for a particular use of Akaike’s unbiased estimator

over the likelihood principle, the fact that unbiased estimators often come

unstuck is sufficient to shift the burden of proof away from the defenders of

the likelihood principle and onto its attackers: they will have to attack the

likelihood principle with something stronger than an unbiased estimator

chosen merely because it is unbiased.

I forsee two objections to my claim that the unbiasedness of an es-

timator is unimportant. (Thanks to Huw Price, Alan Hájek and others

for enunciating these objections for me. I have borrowed Alan Hájek’s

wording of the objections.)
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Objection 1: Although unbiased estimators may be bad estimators,

they are not bad in virtue of their unbiasedness. Their unbiasedness is a

good thing, admittedly outweighed by other bad things.

Response: Assuming as most do that mathematical properties are not

causally related to each other, what can it mean to say that it is not in virtue

of unbiasedness that unbiased estimators can have unacceptable properties?

(Compare for example the claim that it is not in virtue of being odd that

17 is a prime number.) Presumably it must mean that unbiased estimators

need not have unacceptable properties. (Compare: odd numbers need not

be prime.) This is true. But in certain particular situations it ceases to be

true. As the thesis clearly shows, there are cases in which an estimator, if it

is to be unbiased, must have unacceptable properties such as being negative

despite representing a probability. (Compare: if we are only considering

numbers which are single digits, as sometimes we do, then odd numbers

must be prime; so, in such a situation, numbers are prime by virtue of

being odd.) I conclude that unbiased estimators can have unacceptable

epistemological properties in virtue of their unbiasedness, insofar as such

a claim means anything.

Objection 2: To be sure, unbiasedness can be trumped by other consid-

erations — e.g. high variance, or inconsistency, or intractability. But if all

other things are equal then unbiasedness is a desideratum of an estimator.

Response: I can only take this to mean that if other two estimators are

equal in their other desirable properties but one is biased while the other

is unbiased then the unbiased one should be chosen. I have two replies

to this. Firstly, I do not see any argument in favour of it apart from the

bad argument which I will outline below. Secondly, it cannot be argued
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in the absence of a complete list of the desirable properties of estimators;

for if one could argue, in the absence of such a list, that any property

of an estimator is desirable then it is impossible for two such estimators

to exist (since they cannot differ in any property and hence must be the

same estimator). Both of these arguments could perhaps be challenged by

suitable counter-arguments, but I cannot find any such counter-arguments

in the literature to date.

I now turn to possible reasons why, despite the apparent nonexistence

(to date) of explicit reasons for caring about unbiasedness, people still do

care.

AN EXAMPLE OF TALK ABOUT BIAS

When we think of bias with our layman’s hat on, we might think of a darts

player who tends to hit the board to the left of the bull’s eye. (Thanks to

Alan Hájek forthis example.)

What does “tends to” mean here? If it means has a propensity to, then it

illustrates almost perfectly that what people (very reasonably) think “bias”

refers to is not what it currently refers to in statistics. A player who tends

to hit the board to the left of the bull’s eye, indeed one who almost always

does that, may still be unbiased.

Now let us consider a player whose throws are mostly to the left of

the bull’s eye and are biased to the left in the technical sense. Whether that

is bad depends on what, quantitatively, the examiner means by saying that

the thrower “tends to” hit the board to the left. It also depends on what

counts as bad in a particular context — on the game’s scoring system,

whether and if so how bets are placed, and so on. Let us compare two
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example players, A and J. J tends to hit the board to the left, in the sense

that almost all of his throws end up to the left of the bull’s eye. However,

when he misses the bull he always hits the semi-bull or whatever that ring

thing around the bull’s eye is called. J is biased and therefore inaccurate in

the statistical senses. In lay parlance, however, he is reasonably accurate.

A throws to the left exactly as much as he throws to the right, so he

is perfectly unbiased. Moreover, for the sake of argument, I will imagine

(although I do not need to concede this much) that A also hits the semi-bull

whenever he misses the bull, so he is also reasonably accurate in the lay

sense. If you like, we can even arrange that A has the same mean squared

error, measured from the centre of the bull, as J. However, A hits the bull’s

eye less often than J does. (This is perfectly consistent with everything

else I am stipulating.) Who should we expect to win games of darts: the

biased J, or the equally lay-accurate and perfectly unbiased A? The answer

is J. So I continue to maintain that the fact that player J is biased is totally

unimportant.

If we were to rewrite the example so that J is biased in certain par-

ticular ways while A is a good player, we might expect A to win. That

would show that some (token) biased estimators are bad estimators. That

is consistent with everything I claim. In particular, it is consistent with

the claim that we should not care about bias. My claim is that we can see

that a particular biased estimator is a bad estimator without calculating

its bias. I can, for example, calculate instead how far away from the bull’s

eye the thrower throws, on average. Or I can calculate his or her expected

score.
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WHY IS UNBIASEDNESS CONSIDERED GOOD?

The very strength of Bernardo and Smith’s arguments may make the

reader suspicious. If they are right, why does anybody ever look for

unbiased estimators? I have already suggested a pragmatic answer to this

question, but now I would like to suggest a more plausible, psychological

answer.

A property which it really would be nice for an estimator θ̂ to have is

θ̂ = E(θ) (1)

where E(θ) is the expected value (average value) of θ. But a non-Bayesian

statistician cannot calculate such a thing, because θ (as defined) is an un-

known fixed parameter whose expected value is itself and is, ex hypothesi,

unknown. Only Bayesians have a solution to this problem and can calculate

E(θ) in a useful and non-trivial way, using prior probabilities.

Any statistician, Bayesian or non-Bayesian, can, however, consider the

equation

E(θ̂) = θ, (2)

which is really shorthand for E(θ̂|θ) = θ.

It is generally possible to evaluate (2) without knowing θ, because it

is (almost always) possible to calculate E(θ̂) for each possible value of θ,

and it usually eventuates that a suitable choice of E(θ̂) is equal to θ in all of

these possible cases. A pleasant feeling then ensues. This pleasant feeling
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is my explanation for the apparent value of seeking unbiased estimators: if

we expand equation (2), we get∫
θ̂(x)p(x|θ)dx = θ,

which is the definition of unbiasedness I gave above. So, in finding unbiased

estimators, we are finding estimators which satisfy (2); and in doing that,

we feel as though we have satisfied (1).112

But we have not. And I submit that it is only the superficial similarity

between equations (1) and (2) which makes equation (2) seem important.

After any amount of data has been collected, θ̂ is still going to have a single

value. Knowing that its unknown expected value (its average expected

value over hypothetical repetitions of the data-gathering process) is equal

to the also unknown value of θ does us no good at all.

In conclusion, I do not claim that unbiasedness is a bad thing, but I

do claim that I can find only bad reasons for preferring it in an estimator.

Unbiased estimators are like estimators which use only even numbers: they

are neither here nor there, inferentially speaking. In the absence of any

good reason for preferring unbiasedness, it cannot play a substantive role

in objections to the likelihood principle.

4. OBJECTION 11.4
WE SHOULD USE ONLY CONSISTENT ESTIMATORS

An estimator t is consistent iff p(t −→ θ as the sample size tends to

∞) = 1.

112. Equation (1) does not have a name, since most people believe it can’t be calculated and
all the other people — Bayesians — can show that within their theory it is trivially easy to
satisfy.
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Unlike unbiasedness, which, as we have seen, is not considered to be

important by canonical works such as (Stuart et al. 1999), consistency is

taken to be a virtue in almost all thorough presentations of Frequentist

inference.

Estimators produced using the likelihood principle are not guaranteed

to be consistent. So it would be open to an objector to frame an argument

against the likelihood principle by producing a consistent estimator and

claiming that that estimator trumps the likelihood principle in certain cases.

Howson and Urbach (1993) give two excellent responses to such an

objection. Firstly:

A corollary of this [objection] is that an estimate’s worth depends
on who derived it. For suppose statistician A employed the
sample mean to estimate a population mean, while B used some
non-consistent . . . function of the sample mean; and imagine that
they each arrived at identical estimates from the same sample.
[It is perfectly possible to arrive at the same estimate (value)
from different estimators (functions). What it requires in this
particular case is that the function of the mean which statistician
B uses is equal to the mean at the particular sample size that was
actually collected.] According to classical [Frequentist] ideas,
since these identical estimates have different pedigrees, theymust
be differently evaluated: one would be ‘good’, the other ‘bad’!
This, of course, contradicts the difficult-to-gainsay assumption
that logically equivalent statements are equally ‘good’.

(Howson & Urbach 1993, p. 233)

There is nothing wrong with evaluating a statement according to who

made it (consider indexicals, for a start), soHowson andUrbach’s complaint

is a little misleading. It is best rephrased as follows. The only way to
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find out whether an estimate is consistent is to find out which estimator

(function) the estimate (value) is taken from. Thus, there is no such thing as

an estimate being consistent simpliciter. It can only be consistent relative

to some choice or other of estimators. That is Howson and Urbach’s

complaint, more properly stated.

Secondly, Howson and Urbach respond to such an objection by citing

an example inwhich an ‘inconsistent’ method of estimation yields
a perfectly satisfactory and confidence-inspiring estimate. Let
the goal of the estimation be themean of some population [param-
eter] and imagine a scientist eccentrically selecting x̄+(n−100)x̄2

as the estimating statistic, where . . . x̄ and n are the sample mean
and sample size, respectively. Clearly this odd statistic is not
consistent (in the statistical sense), for it diverges ever more
sharply from the population mean as the sample is enlarged.
Nevertheless, for the special case where n = 100, the statistic is
just the familiar sample mean, which on intuitive grounds gives
a perfectly satisfactory estimate.

(Howson & Urbach 1993, p. 233)

Since the objection we are considering is that we should use only consistent

estimators, this counter-example is decisive. It is no good to reply that

of course we can use inconsistent estimators provided that they give an

estimate which coincides with that given by a consistent estimator (as the

counter-example obviously does) because, as I have already mentioned,

the fact that the definition of consistency is asymptotic ensures that all

inconsistent estimators always give an estimate which coincides with that

given by some consistent estimator. In principle it remains open to the

objector to the likelihood principle to say that we can use inconsistent

estimators provided that they give an estimate which coincides with that
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given by some particular consistent estimator, but that objection would

need a separate justification having nothing to do with consistency.

This concludesmy responses to objections to the likelihood principle on the

basis of conflicts with other principles and practices. In the next chapter I

consider a miscellany of further objections to the likelihood principle.

350



— 12 —
Further Objections to the Likelihood Principle

This chapter continues my examination of objections to the likelihood

principle. A general introduction to these objections is given in chapter

10.

1. OBJECTION 12.1
THERE ARE NO ARGUMENTS IN

FAVOUR OF THE LIKELIHOOD PRINCIPLE

Mayo writes:

Apparently, the LP is regarded by some as so intrinsically plau-
sible that it seems any sensible account of inference should obey
it. Bayesians do not seem to think any argument is necessary for
this principle, and rest content with echoing Savage’s declaration
in 1959: “I can scarcely believe that some people resist an idea so
patently right”. However much Savage deserves reverence, that
is still no argument.

(Mayo 1996, pp. 345–346)

If all of the detailed argument in favour of the likelihood principle given

in this thesis were entirely original then perhaps this objection would at

least have been right in 1996, when Mayo made it. In fact, my work is not

that original, as my citations show. (And almost all of the most relevant

citations were published before the above objection was made.) In any case,

this thesis as a whole shows that the objection is not currently tenable.
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Incidentally, Mayo gives a reason for concentrating on Bayesian ad-

vocates of the likelihood principle:

The LP is regarded as having been articulated by non-Bayesian
statisticians, principally George Barnard (1947) and R. A. Fisher
(1956). [I believe this reference to Fisher is a confusion of the
likelihood principle with the method of maximum likelihood —
see chapter 5.] But, as it is their principle now, I will let the
Bayesians do the talking.

(Mayo 1996, p. 339)

This is odd, because of the four book-length monographs to date which

discuss the likelihood principle in detail, three are by non-Bayesians, and

two of these predate Mayo’s claim ((Hacking 1965), (Edwards 1972); (Roy-

all 1997) postdates (Mayo 1996), and (Berger & Wolpert 1988) alone is

by Bayesians). It is true that the set of statisticians who tacitly accept the

likelihood principle is dominated by Bayesians, but the set of authors who

discuss the likelihood principle is not, so it makes no sense to let only the

Bayesians “do the talking”.

2. OBJECTION 12.2
THE LIKELIHOOD PRINCIPLE IS LESS
WIDELY APPLICABLE THAN I CLAIM

I will discuss two versions of this objection: that the framework of chapter

2 is importantly incomplete (i.e., fails to capture important problems of

statistical inference), and that the likelihood principle does not endorse

any reasonable methods of statistical inference.
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OBJECTION 12.2.1
MY FRAMEWORK IS SERIOUSLY INCOMPLETE

In discussing (Birnbaum 1962), Barnard criticises Birnbaum’s assertion

that the likelihood principle is widely applicable, on the grounds that

Birnbaum’s framework, which is similar to mine, fails to capture many

important problems of statistical inference.

[The likelihood principle] applies to those situations, and essen-
tially only to those situations, which are describable . . . in terms
of the sample space S, and the parameter space Ω and a prob-
ability function f of x and θ defined for x in S and θ in Θ. If
these elements constitute the whole of the data of a problem,
then it seems to me the likelihood principle is valid. But there
are many problems of statistical inference in which we have less
than this specified, and there are many other problems in which
we have more than this specified. In particular, the simple tests
of significance arise, it seems to me, in situations where we do
not have a parameter space of hypotheses; we have only a sin-
gle hypothesis essentially, and the sample space then is the only
space of variables present in the problem.

(Barnard 1962, p. 308)

It is certainly true that in such a casewe cannot usefully apply the likelihood

principle, because the likelihood function will consist of a single point;

having nothing to compare that point to, the likelihood principle tells us

nothing. In a moment I will argue that such a case need not arise.

Barnard continues:

The fact that the likelihood principle is inconsistent with sig-
nificance test procedures in no way, to my mind, implies that
significance tests should be thrown overboard; only that the
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domain of applicability of these two ideas should be carefully
distinguished.

(Barnard 1962, p. 308)

I believe I have stated the domain of applicability of the likelihood principle

more carefully than ever before; so, having taken Barnard’s advice about

that, I am in a good position to consider his objection.

Barnard’s objection is compatible with everything I claimed in chap-

ter 8; but it is incompatible with my claim that the likelihood principle

renders Frequentist inference invalid. In particular, Barnard believes that

P-values are often required (P-values justified by Fisher’s theory in which

no alternative hypothesis is required, not by Neyman’s).

Barnard’s premise is that often “we want to have a single hypothesis

with which to confront the data [and ask:] Do they agree with this hypoth-

esis or do they not?” (Savage & discussants 1962, p. 75). The likelihood

principle does not help us with this question, as far as either Barnard or

I can see, because it says that we must base our inferences on the sample

space X only via the observed data xa. If, in addition to considering only

one point in the sample space, we are considering only one point in the

hypothesis space, there seems to be only one number on which we can

base inferences, namely p(xa|h), and nothing to which we can compare it.

But considering p(xa|h) raw, as it were (not in comparison to anything,

just in terms of its absolute magnitude) does not give sensible inferences,

because if X is large and h assigns probabilities anywhere near uniformly

then p(x|h) will be approximately zero; and if X is infinite (as it often is)

and p is a genuine probability function (integrating to 1) then p(xa|h) will

be precisely zero.
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Barnard’s question, “Do [the data] agree with this hypothesis. . .?”, is

one which statisticians often ask (and often answer), but I do not believe

it is a meaningful question. I will argue that the notion of “agreement”

is not a useful notion in a probabilistic situation. In a non-probabilistic

situation, the idea of a hypothesis agreeing with data is straightforward,

apart from Duhem-Quine problems: the two things agree if and only if

they are relevant to each other and do not contradict each other. Both

relevance and non-contradiction are symmetrical notions, so it does not

matter whether we ask whether the hypothesis agrees with the data or

vice versa. But what could agreement mean in a probabilistic situation?

The usual statistical answer is that data and hypothesis agree if and only

if p(data|hypothesis) is large. But there is an alternative definition: that

data and hypothesis agree if and only if p(hypothesis|data) is large. These

two numbers are generally very different from each other. As we saw

in chapter 4, Frequentist statistical methods use functions of the former

number, while the likelihood principle is usually applied by using the latter

number. So there is no univocal answer to Barnard’s question as stated.

As Barnard knows, the commonest methods for answering his ques-

tion, namely Neyman-Pearson hypothesis tests, require at least two hy-

potheses to be specified. I take it, from the quotation, that this is something

which he believes he would not be willing to do in some cases, but I do

not know why. If we have an arbitrary hypothesis h (and even Barnard

is willing to assume that there is always at least one hypothesis available)

then the other hypothesis that we need in order to apply the likelihood

principle can be the catch-all hypothesis. Barnard may have in mind the

fact that the general catch-all hypothesis — the logical negation of h, or

355



equivalently the set-theoretic negation of h within the set of all possible

hypotheses — is often undefined. But a more local catch-all hypothesis,

the set-theoretic negation of h within the universe of models under consid-

eration (Lipton 1993), is always well defined in the types of mathematical

models that statisticians use (see chapter 2). For example, if we take h

to be the hypothesis that the effect of AZT on HIV in Australia is a de-

crease in death rate characterised by a rate ratio of approximately 0. 4, we

can produce an alternative hypothesis by considering the local catch-all

hypothesis h′ that the rate ratio is not approximately 0. 4 (as opposed to

the logical negation of h, which is that it is not the case that the rate ratio

is approximately 0.4). All we need to do to counter the argument I am

imputing to Barnard is produce a relevant alternative hypothesis of this

sort. We may have nothing to say about the logical negation of h, because

probabilities based on the logical negation of h depend on the probabilities

of all sorts of strange possibilia such as (inter alia) the probability that

there is no such thing as HIV and therefore no such thing as the rate ratio

of AZT in reducing it; but this is not a problem, because h′ is perfectly

adequate for our current epistemic need.

So I dispute Barnard’s claim that we often need Fisherian (single-

hypothesis) significance tests. As far as I can see, we never do.

Barnard also claims that sometimes we have more information than

my framework allows for, and that in these cases too we have to use

procedures contrary to the likelihood principle. I admit that when we have

more information than my framework allows for — something which is

clearly logically possible— I cannot show that the likelihood principle still

applies. However, I cannot see any such cases in inference from data to
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hypotheses. Prima facie we should think that they are rare or perhaps even

nonexistent, bearing in mind that the hypothesis space and sample space

in my framework can encode any amount of structure. Barnard has given

(in various publications) many cases in which he believes pivotal inference

(defined in chapter 5) takes advantage of the mathematical structure of a

problem in a way which is not part of the usual construction of hypothesis

and sample spaces; but I cannot find any such case which cannot be covered

by my framework.

To the best of my knowledge, Barnard does not suggest any particular

such case as a counter-example to the likelihood principle. He does give two

general examples of types of structure which may be added to a problem,

but neither of these presents any difficulty for the likelihood principle, at

least in the form in which I have presented it in this thesis. These two

general examples are as follows.

(1) We may have properties of invariance, and such things,
which enable us to make far wider, firmer assertions of a
different type; for example, assertions that produce a prob-
ability when these extra elements are present.

(Barnard 1962, p. 308)

But I see no argument against incorporating such things into the hypoth-

esis space of my framework, especially when they produce a probability.

(2) And then, of course, there are the decision situations where
we have loss functions and other elements given in the
problem which may change the character of the answers we
give.

(Barnard 1962, p. 308)
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Decision problems which specify loss functions (or, equivalently, utilities)

are outside the scope of this thesis, so I admit Barnard’s charge that my

framework is not all-encompassing. However, it is worth noting that the

principles of the most prominent version of decision theory, Bayesian deci-

sion theory, entail the likelihood principle (Berger 1980, Raiffa & Schlaifer

2000).

OBJECTION 12.2.2
THERE ARE NO ADEQUATE THEORIES OF INFERENCE

WHICH OBEY THE LIKELIHOOD PRINCIPLE

The following existing theories of statistical inference obey the likeli-

hood principle (see chapter 3 and chapter 5 for definitions): all forms of

Bayesianism except Empirical Bayesianism, and all pure likelihood meth-

ods including maximum likelihood estimation and the method of support.

Of these, Subjective Bayesianism, Restricted Bayesianism and maximum

likelihood estimation are in active use (although much less so than Fre-

quentism). The objection therefore cannot be that there are no theories

which obey the likelihood principle; it must be that the theories in question

are inadequate in some way.

Objectors to the likelihood principle can argue that only a very gen-

eral method for applying the principle will do, because a principle which

cannot be demonstrably applied in every case does not deserve its name.

Neither Restricted Bayesianism, nor the method of support, nor maximum

likelihood estimation is as widely applicable as Frequentism, as I showed

in chapter 3 and chapter 5. This leaves Subjective Bayesianism as the best

competitor to Frequentism.
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The likelihood principle is widely associatedwith Subjective Bayesian-

ism, as demonstrated both by several of the definitions in chapter 8, notably

Lindley’s, and by many of the attacks on its rationality, notably Mayo’s.

Subjective Bayesianism is difficult to defend precisely because it is such a

complete theory: to defend it properly, a large number of examples would

need to be discussed, in addition to a good deal of basic epistemology. (For

just some of the details, see (Howson & Urbach 1993).) I cannot rehearse

these arguments here, so the question of whether Subjective Bayesianism

is an adequate champion for the likelihood principle will have to remain

open.

The objection is doing quite well up to this point: I have conceded that

there are no widely applicable, practical methods of statistical inference

which can easily be demonstrated to be rational and which have decent

histories of practical application. However, having a history of practical

application is almost irrelevant to a theory’s adequacy. What the objector

needs to show—or at leastmake plausible— is not that the current theories

of statistical inference which obey the likelihood principle cannot easily be

shown to be rational, but that at no point in the future will there be a theory

of statistical inference which obeys the likelihood principle and is rational.

This is a hard task; such a hard task that I cannot see how it could be

attempted except by attacking the likelihood principle directly, as the other

objections I discuss do. But the burden of proof is on the objector since I

have motivated the likelihood principle, and will prove it, in ways which

do not depend on the existence of a general theory of statistical inference

which implements it; so as long as this objection remains an open question,

the likelihood principle remains unscathed by it.
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To give a bit more flesh to this response, note that I have conceded

that Objective Bayesianism does not have much of a history of practi-

cal application; but I have certainly not conceded that there is anything

wrong with all possible forms of Objective Bayesianism, and thus Objec-

tive Bayesianism remains a contender as a practical implementation of the

likelihood principle. Nor do I concede that Subjective Bayesianism has

been defeated. Moreover, I showed in chapter 5 that there are methods of

statistical inference which have not yet been enunciated, and one of these

may turn out to be just what we need.

3. OBJECTION 12.3
THE LIKELIHOOD PRINCIPLE ALLOWS

SAMPLING TO A FOREGONE CONCLUSION

Mayo examines the problem of sampling to a foregone conclusion by

discussing the following example:

[W]e will imagine that the researchers have an effect they would
like to demonstrate, and that they plan to keep experimenting
until the data differ statistically significantly, say at the .05 level,
from the null hypothesis of “no effect.”

(Mayo 1996, p. 338)

As Mayo rightly says, such a procedure is problematic, because one can be

sure that such a procedure will achieve statistical significance, regardless

of which hypothesis is true . . . not in literally any case, as Mayo goes on

to imply, but certainly in many cases.

The literature on the likelihood principle, including books and pa-

pers which Mayo herself cites, is full of passages which emphasise that
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statisticians using the likelihood principle should not also use significance

(P-value) tests. In this case, the point is thatMayo is envisaging a Frequen-

tist rule being used to determine what counts as sampling to a foregone

conclusion: namely, the rule that says that sampling to a foregone conclu-

sion has occurred iff a certain P-value is less than 0.05. If, on the contrary,

a rule compatible with the likelihood principle is used to determine what

counts as sampling to a foregone conclusion, then sampling to a foregone

conclusion is no longer inevitable. I will illustrate this later by showing

that if we use posterior odds to fashion such a rule then there is no problem.

This result is well known in the Bayesian literature.

Mayo comments on one passage which mentions this result, by Sav-

age, and argues against the point in two ways: (a) with an unsupported

rhetorical question — “Why should we accept the likelihood principle?”

(Mayo 1996, p. 345) — a question to which there are a number of pub-

lished answers which I have summarised elsewhere, and (b) by saying that

the person who convinced Savage of the truth of the likelihood principle,

Barnard, has now “changed his mind” (Mayo 1996, p. 345). Although I

realise that there is little point in replying to an ad hominem argument

with another ad hominem argument, it is interesting to note that the au-

thor who Mayo describes as “the most forthright error [i.e., Frequentist]

statistician at the 1959 Savage forum”, Armitage, later changed his mind

to a much greater extent than Barnard did. Armitage moved from roughly

Mayo’s anti-Bayesian position in 1959 to a pro-Bayesian position in his

(1989). Mayo (1996, pp. 343–334) describes Armitage further as “a leader

in the development of sequential trials, having devotedwhole books to their

use and interpretation within the error statistical framework”, apparently
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not realising that by the time she writes Armitage no longer supports her

anti-Bayesian interpretation of his work. Even as early as 1969 Armitage

was sufficiently fond of certain Bayesian methods to make a public call for

an assessment of their error rate characteristics (Armitage et al. 1969).

When such an assessment was made for the first time, in (Grossman et al.

1994), Armitage (the same Armitage) cited it approvingly in his textbook

(Armitage & Berry 1994, p. 506; Armitage et al. 2002, p. 622).

A REPLY TO THE OBJECTION

Besides such ad hominem arguments, there is, of course, a more direct way

to clear the likelihood principle from the charge which Mayo incorrectly

attributes to him.

The reply is straightforward. It is to note that the likelihood principle

applies to analyses of observations, not to analyses of significance tests. (This

was made abundantly clear in chapter 2 and again in chapter 8.) Conse-

quently, a correct application of the likelihood principle to the case Barnard

discusses would be as follows: ignore the significance tests and conduct a

new analysis. So the point which Mayo sees Barnard as making is simply

irrelevant to the likelihood principle. Thus, the likelihood principle does

not allow sampling to a foregone conclusion; at least, certainly not in the

way in which Mayo claims it does and, as far as I can tell, not at all.
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4. OBJECTION 12.4
THE LIKELIHOOD PRINCIPLE IMPLIES A COUNTER-

INTUITIVE STOPPING RULE PRINCIPLE

First, a rough definition to get our bearings. A stopping rule is an agree-

ment by experimenters and statistical analysts to execute an experiment

in parts, with each part being subjected to a pre-agreed type of statistical

analysis as soon as possible after its completion, and with the series of

sub-experiments guaranteed to terminate “early” (before some pre-agreed

maximum sample size has been reached) if one of the analyses has some

pre-agreed outcome. The sequence of sub-experiments which results from

applying a stopping rule is called a sequential experiment. Typically the

only outcome which is allowed to cause early termination of a sequential

experiment is a pre-agreed rate of events (e.g. deaths) among the exper-

imental subjects. The outcome required to trigger early termination of

the experiment is typically, but not necessarily, worked out by requiring a

pre-agreed level of significance against some pre-agreed null hypothesis. I

will discuss the use of stopping rules in much more detail in chapter 15.

Birnbaum’s version of the likelihood principle entails the following

principle:

In a sequential experiment Eτ , with observed final data [xa],
Ev(Eτ , [xa]) should not depend on the stopping rule τ .

(Berger & Wolpert 1988, p. 76)

Revising this to avoid the undefined term “Ev(Eτ , [xa])”, we get the follow-

ing version of the SRP, which follows from my version of the likelihood

principle:
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The stopping rule principle (SRP) (Grossman version): In-
ferences about hypotheses made on the basis of experimental
data should not depend on the stopping rule which was either
planned or actually used in the experiment in which the data
were collected, provided that the conditions of applicability of
the likelihood principle are satisfied.

Mayo claims that the stopping rule principle is false, and hence that the

likelihood principle is false.

Mayo’s main argument against the stopping rule principle is that it

allows sampling to a foregone conclusion. I have already defended the

likelihood principle against the allegation that it allows sampling to a

foregone conclusion. An exactly parallel argument defends the stopping

rule principle against the same allegation.

OBJECTION 12.4.1
THE LIKELIHOOD PRINCIPLE IMPLIES A
FALSE STOPPING RULE PRINCIPLE

There are other versions of the stopping rule principle, and the various

versions are easily confused. Consider, in particular, the following:

The universal stopping rule principle: in any experiment, the
stopping rule is always irrelevant to inferences from the experi-
mental data to conclusions about hypotheses.

A possible objection to the likelihood principle is that it entails the universal

stopping rule principle. I acknowledge that the universal stopping rule

principle is counter-intuitive; in fact, it is false, as I will show in a moment.

So, to defend the likelihood principle I must show that it does not entail

the universal stopping rule principle. Mayo, the most prominent opponent
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of the SRP, acknowledges that the likelihood principle does not entail the

universal stopping rule principle (Mayo 1996, p. 342, footnote). In this

section I will show that she is right: the universal SRP is false.

Howson andUrbach give a nice illustration of the falsity of the univer-

sal SRP. They note that an experiment’s stopping rule would be relevant

to one’s conclusions about hypotheses

. . . if one were relying upon a random sample to measure the
mean height of a group of cooks who happened to be preparing
lunch at the same time as the experiment was in progress [and if
we also knew] that tall chefs cook faster than short ones and that
the trial was concluded as soon as lunch was ready. . . . Ignoring
the stopping rule in such a case would be overlooking relevant
information. . . .

This concession should not be misunderstood. It does not
mean that the scientist’s intention to stop the trial at a particular
point is of any inductive significance; hence, our position is quite
different from that of the classical [Frequentist] statistician. We
are simply claiming that in estimating a parameter, one normally
would derive all one’s information from the composition of a suit-
able sample, but that sometimes events attending the sampling
process also have significance as evidence.

(Howson & Urbach 1993, p. 366)

It is fortunate for the likelihood principle, in the face of this decisive criti-

cism of the universal SRP, that it (the likelihood principle) does not entail

the universal SRP. This can be seen by noting that the stopping rule in this

example is naturally seen as part of xa and hencemay be used in a likelihood

analysis. If, perversely, Howson and Urbach’s stopping rule is not made

part of xa then the SRP might seem to apply, but in fact it does not (at

least, my version does not), because it is a precondition of the application
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of my version of the likelihood principle, and hence of my version of the

SRP, that xa represents “all observations considered relevant to any of the

hypotheses” (chapter 8). A last gasp objection might be that Howson and

Urbach’s stopping rule might not be considered relevant to the hypotheses,

even though it is relevant. In answer to this I can only say that when a

mistake of this kind is made it is rational (although unfortunate) to accept

an unsatisfactory analysis until the mistake is discovered and corrected, at

which point the analysis can be amended. Consequently, the fact that an

analysis which leaves out part of the observation can give bad results is no

criticism of the likelihood principle.

A stopping rule which is naturally seen as part of xa is known as

an informative stopping rule. As we have just seen, a stopping rule can

be informative even if the agent doing the analysis doesn’t know that it’s

informative (or falsely believes that it isn’t). This holds the solution to a

puzzle about deliberate misleading of the analyst by an experimenter. For

example, a pollster employed by the Evil Bayesian Party might start his

poll in the suburbs most likely to vote for his party, and might stop when

the proportion of support for his party went above say 90%. A statistician

analysing the results but unaware of the order in which the experimenter

had sampled would, rightly from her point of view, ignore the stopping

rule. The stopping rule is informative (because of the ordering of the data;

otherwise it would not be), but the analyst does not know this. She is

performing an unsound analysis, but only because of ignorance. It is hard

not to be worried about the impact of accepting the stopping rule principle

on this sort of example — it even worries me — but the situation is no

different in principle from any other withholding of information to mislead
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an epistemic agent. Of course an evil experimenter can mislead a statistical

analyst. He can always do so, by withholding information or by lying. The

stopping rule principle, because it is a powerful analytic tool, gives him

one more way to do so; but that should not count against the stopping rule

principle. At most, it means that the stopping rule should be put to one

side if the analyst believes the experimenter to be evil, just as various other

rules of inference from testimony need to be suspended in such a case.

Alternatively, a Bayesian analyst can put a prior probability distribution

on the behaviour of the evil experimenter, and then the analysis becomes

unproblematic.

OBJECTION 12.4.2
THE STOPPING RULE PRINCIPLE IS FALSE EVEN
WHEN NO FREQUENTIST METHODS ARE USED

This objection is certain to be a remaining niggle in the minds of readers:

that Mayo’s argument above is irrelevant, because the likelihood princi-

ple and the stopping rule principle do not apply when significance tests

(Frequentist methods) are used; but that it does not follow that everything

is OK when Frequentist methods are not used. Perhaps sampling to a

foregone conclusion is possible anyway.

It is impossible to certify that this cannot happen in complete gener-

ality, since the likelihood principle does not specify exactly how a statistical

analysis is to be done, and there is no limit to the (rational and irrational)

ways in which it can be used. But it is possible to certify that sampling to

a foregone conclusion cannot happen when the likelihood principle is used

as part of a Bayesian analysis (subject to the constraints of chapter 2), and

similar arguments are in principle available for other reasonable ways of
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using the likelihood principle. The Bayesian issue has been dealt with a

number of times in the literature. A particularly succinct version is given

in the forum from which Mayo quotes:

Dr P. ARMITAGE: I should like Professor Savage to clarify a
point he made in Part I. He remarked that, using conventional
significance tests, if you go on long enough you can be sure of
achieving any level of significance; does not the same sort of
result happen with Bayesian methods? The departure of the
mean by two standard errors corresponds to the ordinary five
per cent level. It also corresponds to the null hypothesis being
at the five per cent point of the posterior distribution. Does it
not follow that by going on sufficiently long one can be sure of
getting the null value arbitrarily far into the tail of the posterior
distribution?

SAVAGE: The answer is surely no, under any interpretation.
It is impossible to be sure of sampling until the data justifies
an unjustifiable conclusion, just as surely as it is impossible to
build a perpetual-motion machine. After all, whatever we may
disagree about, we are surely agreed that Bayes’s Theorem is
true when it applies. But to understand this impossibility let us
examine first a simple case.

Consider an urn that contains three red balls and a black one
or three black balls and a red one. To convince you of the first
hypothesis as opposed to the second, for some given purpose,
would mean to make the likelihood ratio in favour of the first
sufficiently large, say at least 10. Suppose that I, in my zeal,
decide to keep sampling (with replacement) until the likelihood
ratio, which in this particular case is 3(r−b), exceeds 10. This
will happen if and only if I sometimes succeed in drawing three
more red balls than black ones; if there are really three black
balls and a red one, it is quite probable that I never will succeed
until the end of time. In fact, the probability of failure in this
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unfavourable circumstance is at least 9 / 10, as it ought to be on
general principles; the exact value is 26 / 27.

As I understand it, Dr Armitage is particularly interested
in the following sort of example. The prior distribution of a
parameter µ is rather broadly distributed around 0, and observa-
tions of µwith unit standard deviation are sequentially available.
From ‘your’ point of view, that is, the point of view summarized
by the assumed prior distribution, what is the probability P that
I should succeed in sampling until your posterior odds that µ is
positive are at least 10 times your initial odds that µ is positive,
if µ is in fact negative? There can be no escape from the simple
formula that P is at most a tenth.

(Savage & discussants 1962, pp. 72–75)

Since this is an important example, I will expand on it a little. Suppose

there areN balls in the urn: eitherN−1 reds and one black orN−1 blacks

and one red. We will look at one ball at a time, with replacement, to decide

which of those hypotheses to believe. I will allow you, the experimenter, to

have whatever stopping rule you like, including “continue sampling until I

have falsely proved that the balls are mostly black”. I am willing to make a

bet at even odds that there are more red than black balls, on the condition

that you use a straightforward likelihood method to evaluate the evidence,

namely: I lose the bet if p(observed balls conditional on there being mostly

blacks in the urn)/p(observed balls conditional on there being mostly reds

in the urn) exceeds some ratio, say 10. (If I were instead to agree that the

Frequentist rule p < 0. 05 was an adequate test of a hypothesis, you would

be able to deceive me with probability 1.)

If there areN balls of which 1 is red, and if the alternative hypothesis is

that all except 1 are red, then the likelihood ratio p(mostly blacks)/p(mostly

369



reds) is (N − 1)(b−r). So I will lose the bet if at any time before you choose

to stop the experiment there have been log10(N −1) more blacks than reds.

And you are completely in charge of the stopping rule. Still I should expect

to win the bet, as a little algebra will show. This is a nice illustration of

the fact that we may intuitively expect to be able to sample to a foregone

conclusion even when in fact we cannot.

Mayo (1996, p. 352) quotes the above question from Armitage about

sampling to a foregone conclusion but not the response from Savage, and

adds:

Although Savage wants to deny Armitage’s implication, he ap-
pears to grant it, though fuzzily, and moves on to another exam-
ple

(Mayo 1996, p. 353)

and

Savage [is] plainly uncomfortable with Armitage’s result
(Mayo 1996, p. 356)

Apparently “The answer is surely no, under any interpretation” is a way

of granting a proposition and shows discomfort. (Nowhere does Savage

qualify his “no” to a “yes” or even a “perhaps”.) In the face of a claim that

an author says almost the exact opposite of what he actually says I am at a

loss for words.

In addition to misrepresenting her opposition on this point, Mayo

claims to give an example in which a Bayesian would sample to a foregone

conclusion. Her example involves the assumption that “In certain cases,

rejecting a null hypothesis H0, say at level of significance .05, corresponds
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to a result that would lead a Bayesian to assign a low (e.g., .05) posterior

probability to H0” (Mayo 1996, p. 352). It follows that, since the Frequen-

tist would sample to a foregone conclusion if he ignored the stopping rule,

the Bayesian (who does ignore the stopping rule, in line with the likelihood

principle) will also sample to a foregone conclusion. The stated assump-

tion is prima facie plausible, but in fact it is not true, unless the Bayesian

uses prior probabilities which do not form a probability distribution (an

improper prior). Mayo claims that “the kind of prior that leads to the

trouble [is] a commonly acceptable one” (Mayo 1996, p. 356). It is true that

some Bayesians use such priors, while other Bayesians have been attacking

them for doing so since the 1920s (e.g. Hill in (Berger & Wolpert 1988,

p. 162)). In any case, the probability calculus forbids improper priors, so

they are ruled out by the framework I set out in chapter 2.113

In an example like Armitage’s, if we sample until the posterior odds

that µ is positive are at least k times the initial odds that µ is positive,

the probability of sampling to the “foregone” conclusion that µ is positive

113. At the worst, Mayo has convicted those Bayesians who both use improper priors and
take the stopping rule principle seriously of inconsistency; but it has been known since the
1970s that Bayesians who use improper priors can be shown to be inconsistent with or
without the stopping rule principle (Stone 1976). If Bayesian methods based on improper
priors are inconsistent with or without the stopping rule principle then Mayo’s proof that
they are inconsistent with it proves nothing important about the stopping rule principle and
hence nothing about the likelihood principle. It does perhaps prove that Bayesians ought to
be even more careful about using improper priors than some of them realise, but that point
does not reflect badly on the stopping rule principle.

Incidentally, although sampling to a foregone conclusion is possible with an improper
prior it is still, usually, not feasible: a typical realistic Bayesian analysis, conducted in a
reasonable amount of time, cannot reach a foregone conclusion even if it uses an improper
prior (Berger & Wolpert 1988, pp. 81–82). Hill argues that this result generalises to a proof
that it is impossible for an improper prior to result in a betting loss (Berger &Wolpert 1988,
p. 167–171), contra Mayo’s claim. An intuitive understanding of why this is so must consider
that Mayo’s claim about improper priors is true only if an infinite number of analyses is
possible: any less than infinite time changes the outcome substantially. This is why some
Bayesians still feel free to use improper priors. A related point is that even a prior which
differs only slightly fromMayo’s improper prior can make sampling to a foregone conclusion
impossible.
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when in fact it is negative is at most 1k ; and hence it is not really foregone

at all.

One final remaining worry might be that we ought to be able to make

the probability of making this mistake even lower, perhaps by breaking

the likelihood principle. The answer to this is that, yes, it can be made

lower. By breaking the likelihood principle and taking the stopping rule

into account in a Frequentist manner we can make this particular false

conclusion as rare as we like. We can do this, for example, by refusing to

document a given proportion of red balls, or by using a non-ignorance prior,

or by introducing a utility function. But if we do these things we make

sampling to the opposite false conclusion (that µ is negative when in fact

it is positive) more frequent. I conclude that there is nothing particularly

unsatisfactory about the repeated-sampling properties of the Bayesian use

of the likelihood principle.

This completes my responses to all the objections to the likelihood

principle of which I am aware. In the next chapter, I give a proof of the

likelihood principle, followed in chapter 14 by responses to objections to

the proof.
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Part III

Proof And Pudding
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— 13 —
A Proof of the Likelihood Principle

1. INTRODUCTION

I hope that Part II of this thesis has made the likelihood principle plausible.

Part III completes my story in two ways: first by giving proofs of the

likelihood principle, and then by offering a serving suggestion showing

how it can best be eaten, by discussing a case study of its application.

In this chapter I present a proof of the likelihood principle, for discrete

statistical distributions. Mathematically speaking, my proof is only slightly

different from a number of previous proofs of the likelihood principle, all

of which follow the general strategy of (Birnbaum 1962); I have borrowed

especially from (Berger &Wolpert 1988, pp. 27-28). My proof differs from

its predecessors mostly in the careful wording of its premises, which for

the first time incorporate all the necessary conditions of applicability. In

the following chapter I will present and refute objections to my proof.

The main premise from which the proof proceeds is essentially the

uncontentious conclusion which I drew from Cox’s example in chapter

7. Recall Cox’s example: if we send blood to one of two non-equivalent

laboratories, basing the decision as to which on the toss of a coin, it is

reasonable to take into account which laboratory it actually went to when

making inferences from the results the laboratory sends back, even though

that makes it impossible to fix the overall error rate for the experiment

375



at any predetermined level (counting both the coin toss and the labora-

tory results as part of the same experiment). The conclusion I drew from

Cox’s example was that inferences about the blood must take into account

properties of the laboratory that was actually used, and must ignore prop-

erties of the one that wasn’t. In other words, one should condition on the

coin toss. In this particular case at least one should treat the coin toss

and the laboratory measurement as two separate merriments, regardless

of whether they were planned together. I have never come across anyone

who disagrees with this conclusion. There are many authors (such as

Mayo) who believe that one should not always condition on observed data,

but there are none who believe that one should not condition on the coin

toss in Cox’s example.

I promised earlier that we would be able to generalise this conclusion,

using very mild assumptions indeed, to a fully-fledged principle which

makes precise the idea that we should analyse Table 1 by columns instead

of by rows. This principle is, of course, the likelihood principle. One of

the most stunning results in twentieth-century applied mathematics, due

to Birnbaum (possibly based on a sketch of a proof in (Pratt 1961, p. 166),

and also independently discovered by Barnard in 1962), is that agreement

about what to do with the results of an experiment chosen by a coin

toss is very nearly enough to support a proof of the likelihood principle.

No assumptions about experiments which are chosen in another way —

perhaps a deterministic way, or even a deliberate way — are required,

even though the likelihood principle can be applied to such experiments

once it has been proved. Once the Cox example is formalised as the weak

conditionality principle (below), all that needs to be added is a small set of
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conditions limiting the domain of applicability in line with the framework

of chapter 2 and a weak sufficiency principle which is fairly uncontentious

(although I consider some objections to it in chapter 14).

The idea of proving a normative principle may seem strange. What

makes it possible is that the conditioning premise drawn from the Cox

example is normative (although very, very weak): it says that we must

take into account the properties of one laboratory and must ignore the

properties of the other. The weak sufficiency principle is also normative.

The chain of reasoning from these premises to the likelihood principle is

purely mathematical but slightly difficult, and therefore takes the form of

a deductive proof.

By proving the likelihood principle from a premise about conditioning

which mentions only a single coin toss, I will show in this chapter that

authors who are squeamish about conditioning on observed data in some

casesmust bite the bullet and disown conditioning in all cases, even in Cox’s

case; because if they give me Cox’s case then they give me the likelihood

principle, and that in turn entails that conditioning is always necessary

(when we are doing inference within the framework of chapter 2).
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2. PREMISES

FORMAL DEFINITION OF A LIKELIHOOD FUNCTION

A likelihood L(h) is a function p(xa|h), where p is a probability function or

a probability density function, h ranges over a set of hypotheses H , and xa

is some observed data considered as a constant.

Recall that two likelihood functions are the same if and only if they’re

proportional to each other. In other words:

L1(h) = L2(h) iff L1(h) ∝ L2(h)

— i.e., iff (∃c > 0) (∀h) L1(h) = cL2(h).114

THEWELL DEFINED LIKELIHOOD FUNCTION CONDITION

The concept of a statistical measurement is only useful under a condition

which is not always made explicit but which, if made explicit at this stage,

will save a lot of trouble later. It is what I call theWell Defined Likelihood

Function condition (WDLF):

For each hypothesis h under consideration in a statistical analysis,
ph(xa) ≡ p(xa|h) must be well defined (i.e., have a single value).

The WDLF is an explicit condition of applicability of my version of the

likelihood principle. Although I state it explicitly here formaximum clarity,

it really follows from the framework which I set up way back in chapter 2.

114. If the two functions L1 and L2 both have finite integrals then this condition is the same
as saying that they are the same likelihood function iff they reduce to the same function when
normalised. To normalise a function is to ensure that it integrates to 1, without changing its
shape. This is easily done by replacing the function f with f /

∫
(f).

But likelihood functions need not have finite integrals; and functions without finite
integrals cannot be normalised in this way.
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There I stated that the hypothesis space H must be fixed for the duration

of the analysis.115 Since the likelihood function, p(xa|h) with xa fixed and

h variable, obviously supervenes on H , the assumption that H is fixed for

the purposes of the analysis of a statistical measurement implies that the

likelihood function is also fixed.

In situations in which merriments are described formally, the WDLF

or something very like it is often made explicit, especially when disagree-

ments about the likelihood function would have legal ramifications, as in

clinical trials. In any case it is a sensible assumption. Even in an informal

situation in which the likelihood function is not explicitly agreed by all

parties to an analysis, my discussion is still relevant: it simply applies to

the statistical model which is being used after all personal disagreements

have been ironed out.

The following important sub-premises are implicit in the WDLF.

Sub-premise A:H takes into consideration all the hypotheses we’re going

to consider, no matter what the data turn out to be.

In most scientific cases this is very easy to ensure. It may be a

problem for the representation of our actual psychological processes by

statistical models, but in this thesis I am only worrying about normative

considerations.

Sub-premise B: All factors that are considered epistemically relevant to

the problem are included in the model.

115. H need not be held fixed in any temporal sense; it merely needs to be held fixed across
possible observations for the purposes of any single analysis of the data. Specifically, themodel
need not be fixed in advance of the data collection. Also, as far as the likelihood principle is
concerned those parts of the model representing possible observations which did not occur
are irrelevant and therefore need not be held fixed, nor even exist, at any time.
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Usually all the factors of interest to the agents who are making the

statistical model are represented as components of hypotheses of interest,

which reduces Sub-premise B to Sub-premise A; but somemay be unknown

factors which may not be of interest on their own account but may still be

epistemically relevant. Such factors are called “nuisance parameters”.

When Assumption B is broken, things can become very confusing.

The most interesting example for us is probably the case of stopping rules,

as discussed in chapter 11. We saw there that stopping rules are relevant

to an analysis if and only if they are proxies for important information

(e.g., sample size) that was not mentioned in the stated model. It is hard to

think of reasons why this situation should be allowed to arise: it is hard to

think of reasons why any acknowledged important aspects of the epistemic

situation should not be included in the model. (It is hard to think of a

reason why sample size should ever be ignored, for example.) Note in this

context that we can add any type of data we like to the model: we are not

restricted to parameters of a distribution.

Sub-premise C: For the purposes of this statistical measurement we have

decided not to change H in an ad hoc way as a result of seeing the data.

(By ad hoc I mean without a principled reason.)

The literature tends not to worry about this issue. Dawid’s version

of the likelihood principle, for example, allows for ad hoc inference proce-

dures but not for unpredictable ad hoc inference procedures: “an [inference

procedure] may be entirely ad hoc, so long as it specifies the particular

inference to be made in every relevant situation.” (Dawid 1977, p. 247)

Sub-premise D: We have decided not to change H in a non-ad hoc way.
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We could combine Sub-premises C and D, of course. But they are

clearer if kept separate.

The obvious argument in favour of Sub-premise D is that if we con-

tradicted it by deciding to change ph(d) to q = f (ph , d) on seeing data d ,

apparently contradicting Sub-premise D, we could and should replace ph

by q in the initial description of the statistical measurement, which would

result in a well-behaved probability distribution (modulo a normalisation)

for which Sub-premise D would hold. In that case we might as well accept

Sub-premise D after all. Any non-ad hoc decision to change H should

be forseeable, so Sub-premise D is reasonable in every case. The only

weak point of this argument is that it assumes a rational doxastic agent.

While there is something to be said for assuming that a single doxastic

agent ought to be rational, it may be impossible — for logistical reasons,

quite apart from the theoretical problems inherent in collective decision-

making (problems which are well discussed in (Kadane et al. 1999)) — for

a group of agents to be rational to the extent required by Sub-premise D.

Consequently, I cannot pretend to deal fully with the problem of multiple

doxastic agents.

A possible argument against Sub-premise D is that statisticians, even

lone statisticians, do not always behave in accordance with it: they some-

times accept rules which require them to changeH after seeing data. Two

examples will illustrate this.

Firstly, Bayesians of many schools are willing to make small changes

to their priors if the data suggest that the likelihood function ought to have

a different functional form — for example, after seeing the outcome of a

merriment, a statisticianmight change the functional form of the likelihood
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fuction from aNormal (Gaussian) distribution to a log-Normal distribution

of a very similar shape and size. This can be shown to have very little effect

on the conclusions the statistician will draw in a very wide range of cases,

but obviously there are cases in which changing the functional form of the

likelihood function will make a difference to some conclusion. We cannot

doubt that Sub-premise D is broken by such scientists.

Secondly, some authors (Basu 1975, p. 19; Gelman et al. 1995) advocate

changing the likelihood function in a more substantial way if the data turn

out in certain ways. The most interesting issue is whether such changes

are merely matters of convenience, in which case agreement that one could

validly apply the transformation f (ph , d) would make Sub-premise D still

valid in principle.

Despite the plausibility of these objections in certain circumstances,

two points need to be made in favour of Sub-premise D. The first is that the

objections of Gelman et al. only apply in unusual circumstances. In typical

scientific uses of the likelihood principle, such as fixed-size biomedical

experiments, the WDLF (and therefore Sub-premise D) is uncontested.

The second point to be made is how extremely little Sub-premise D claims,

even in contentious circumstances. The availability of the transformation

f (ph , d) means that changing the likelihood function after seeing the data is

fine, provided that the participants in the analysis either agree on the change

and hence agree to re-analyse the data or agree to report their results

separately (agree to disagree); and this latter situation is no different in

principle from what would have happened if the participants had not been

able to agree on a statistical model in the first place.116

116. Incidentally, it is rare for scientists to fail to agree on a statistical model, perhaps
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SUFFICIENCY

Then the simplest definition of sufficiency is as follows:

sufficiency definition 1
T(x) is a sufficient statistic for h iff p(x|T(x)) is algebraically
(functionally) independent of h.

A sufficient statistic for h, T(x), typically contains much less information

about the world than X does, but the same amount of information (in a

sense which I will make precise in the rest of this section) about h.117

The reason for the name “sufficient” is that if T(X) is sufficient for h

(in the technical sense above) then it is all we need to know about X , if our

sole purpose is to infer things about h, and so it is sufficient information

in the lay sense. Anything else we know about X , over and above T(X), is

epistemically redundant. For example, if we’re sure that all we care about

is the average height of a population (a big if), there is no point in recording

more than the average height of the test sample; any other information

about the test sample can be thrown away.

There is a problem with the above definition of sufficiency: it can

only be applied by people who are willing to talk about p(h). According

to Neyman and many others, including some proponents of the likelihood

principle, such as Hacking (1965) and Edwards (1972), p(h) is meaningless

in many circumstances. Happily, there is an alternative definition of suffi-

ciency which agrees with the first version whenever p(h) exists but which

because their reputations as productive members of their community depend on being able
to conclude statistical analyses quickly and without fuss.

117. For example, if x is a vector of the heights of a sample of people then, under the Normal
or log-Normal models most often used for human heights, the average (mean) height of the
sample, T(x) = Σn

xi=1xi / n, is a sufficient statistic for the average (mean) height of the
population.
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does not require p(h) to exist, and which has the same epistemological

properties as the first version. This more widely applicable definition is:

sufficiency definition 2
T(X) is a sufficient statistic for h iff we can find a function T′

which allows p to be factorised in the following way:

(∀h ∈ H ) p(x|h) = T′(T(x), h)× p(x|T(x)).

A theorem known as the factorization theorem shows that this definition

is equivalent to the earlier definition.118

Seeing that statistical sufficiency implies epistemic sufficiency is even

easier using definition 2 than it was using definition 1. For definition

2 shows that all functions of p(x|h) can be calculated from T(x) and h,

when T is sufficient for h. This point may look superficially as though it

assumes the likelihood principle, but it does not. That all inferences about

h depend on p(xa|h) is, more or less, the likelihood principle; but that all

such inferences depend on p(xi |h) for some set {xi}, is an unrelated, trivial

claim.

For example, in most experiments on coin tossing, the number of

heads and the number of tails are jointly sufficient for all inferences; the

order in which we observe the heads and tails is irrelevant. (x1, x2, . . .

are jointly sufficient iff the ordered tuple 〈x1, x2, . . . 〉 is sufficient.) The

only assumption we need to make in order to be sure that we have a

118. One part of the factorization theorem is easy to prove. It is easy to see that if this
equation holds then T(X) is sufficient for h on definition 1, thus: if we know T(x) then we
know the right-hand side as a function of h (bearing in mind that we can calculate p(x|T(x)),
because it does not depend on h); hence, we know the left-hand side, which establishes that
T(X) is sufficient for h. The converse is more long-winded to prove, and I will not be relying
on it (since my working definition of sufficiency will be the second version, and all I need
show is that whatever fits my definition also fits the other one, not vice versa), so I will omit
the proof.
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non-trivial sufficient statistic in the coin-tossing case is the assumption of

exchangeability explained in chapter 2. As we have seen, this requirement

is trivially satisfied if the results take the form of a multiset.

All statistical models have sufficient statistics, trivially, since h itself

is a sufficient statistic for h according to the above definition. Of course,

such trivial sufficient statistics are not very useful. In addition, a model

may have many sufficient statistics.

PREMISE: THEWEAK SUFFICIENCY PRINCIPLE (WSP)

The weak sufficiency principle: If T(X) is a sufficient statistic
for h, and if T(x1) = T(x2), then inference procedures should not
derive different inferences about h from x1 and x2.

(adapted from Basu 1975, p. 9)

The weak sufficiency principle was named thus by Dawid (1977) because

it is weaker (claims less) than other similar principles. I will not be consid-

ering rival principles, but I have retained the name, partly for consistency

with the literature but mostly because it is useful to be reminded how

modest the principle’s claims are.

No statistician knowingly breaks theWSP. If a conflict with theWSP

ever arises, the only reasonable conclusion is that T(X) is not a sufficient

statistic for h after all. I would like to give four arguments for this. I do

not claim that the four arguments are independent of each other; only that

one might convince where the others fail.

Firstly, theWSP follows directly from the claim (defended above) that

statistical sufficiency entails epistemic sufficiency.
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A second argument for the WSP, adapted from (Basu 1975, p. 9),

is as follows. Let us imagine that we have observed xa in a two-step

procedure: we have first conducted an experiment with sample space X

but noted only the value of T(x), not the precise value of x. Then we

conduct a further, separate experiment with sample space T(x), noting

this time the exact value xa obtained. Since T is sufficient for h, the second

experiment is “statistically trivial” (Basu’s term) and tells us nothing about

h. Hence, the outcome of the second experiment can make no difference to

our inferences about h. Hence values x1 and x2 which are possible outcomes

of the second experiment (i.e., such that T(x1) = T(x2)) should lead to the

same inferences about h.

Thirdly, here is a Bayesian argument for the WSP. We can prove that

ifT(X) is sufficient for h, as defined above, then (∀x) p(h|T(x)) = p(h|x). So

knowing T(x) allows us to know the entire function p(h|x) (as a function

of h).119

119. This Bayesian argument will only be helpful for those who believe that p (h|x) is mean-
ingful — some do not — but since the proof is simple it is worth presenting.

Proof: (∀a, b, c) p (a|b) = p (a|c)p (c|b) + p (a|c)p (c|b), either from the definition of
conditional probability or (better, since I take conditional probability as primitive) from the
probability axioms of chapter 2.

So p (h|x) ≡ p (h|X = x)
= p (h|T(X) = T(x)). p (T(X) = T(x)|X = x)+p (h|T(X) 6= T(x)). p (T(X) 6=

T(x)|X = x)
= p (h|T(X) = T(x))× 1 + p (h|T(X) 6= T(x))× 0
= p (h|T(x)).

Interestingly, the above proof assumes a classical logic; otherwise, the fact that knowing
parts of x above and beyond T(x) cannot affect the fact that we know the whole of p (h|x)
might not imply that it cannot affect our conclusions about h in any way. In a paraconsistent
logic (one in which some but not all contradictions are true (Priest 1987)), knowing T(x)
might enable one to know p (h|x), but finding out more about x might enable one to find
out that some of the truths previously discovered were false (as well as true). This would
invalidate the weak sufficiency principle, and thus the likelihood principle (since the converse
of the likelihood principle can be proved from the converse of the weak sufficiency principle
given the weak conditionality principle, as I prove below when I show that the likelihood
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PREMISE: THEWEAK CONDITIONALITY PRINCIPLE (WCP)

Informal statement:

If one of two possible statistical measurements is chosen by the
toss of a fair and indeterministic coin, no inference procedure
should require information about the merriment that was not
performed.

Formal statement:

The weak conditionality principle: Consider two statistical
measurements M1 = (X1,H , p1) and M2 = (X2,H , p2). (By this
I mean that M1 has sample space X1, hypothesis space H and
probability function p1, and similarly forM2.)

Note that the set of hypotheses is the same for each. This is
a deliberate restriction which entails that this principle does not
apply to hypotheses about alchemy compared with hypotheses
about chemistry, although it does apply to comparing statistical
models that each consider both alchemy and chemistry. This is
in accordance with the WDLF.

Now consider an observation from a new merriment, M ∗,
which consists of using a fair, epistemically indeterministic coin
to select one ofM1 andM2 at random with probability 1/2 each.
M ∗ still falls within our definition of a statistical measurement:
formally, M ∗ = ( (J, XJ ), H, pj (J, XJ ) ). (By “epistemically
indeterministic” I mean simply that no deterministic pattern in
the behaviour of the coin has been noted or is expected. Some
people are known to be able to toss a coin so as to yield a pre-
determined outcome. Our coin-tosser must not be one of those
people.)

principle is logically equivalent to the union of the two weaker principles, and since the weak
conditionality principle is not thrown into doubt by paraconsistency). As far as I know this
is an original point, and perhaps worth following up . . . but not here.
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Suppose M ∗ is performed, and turns out to consist of M1.
Then any inference procedure should derive the same inference
from this instance ofM ∗ as it would have derived fromM1 alone.

The weak conditionality principle is called “weak” for the same reasons

as the weak sufficiency principle: for consistency with the literature and

to remind us how modest it is. Stronger versions of the conditionality

principle replace the coin with an arbitrary ancillary statistic, thus:

The conditionality principle is given as follows:
C: cont(I1) = cont(I2) if I2 is the conditional inference base
given the value of an ancillary for I1[.]

(Evans et al. 1986, p. 185)

where “cont(I )” refers to “what the model and data in I . . . say concerning

the unknown θ” (Evans et al. 1986, p. 184). I will not dwell on this

more general principle, because I do not need it. I only need the Weak

Conditionality Principle, which is so similar to Cox’s example given above

that it is barely even a generalisation of it. The coin is still a coin. All that

has changed is that the two laboratory measurements have been replaced

by two arbitrary measurements relevant to H .

ALTERNATIVE PREMISES

The likelihood principle is not just entailed by the the WSP and the WCP,

it is actually logically equivalent to their conjunction. So it is impossible

to weaken or remove either principle without strengthening the other one,

unless a new principle is added.

The WSP can be replaced, in the proof of the likelihood principle, by

a principle saying that if an ancillary statistic exists then it is acceptable
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to condition on it, provided that we add an additional axiom saying that

certain types of structural information can be ignored (types of structural

information which only turn up in the structural theory of Fraser and the

pivotal theory of Barnard). A proof using these alternative axioms is given

in (Berger 1985, pp. 37–39).

Evans, Fraser and Monette (1986) have a proof that depends only on

a version of the conditionality principle, but it is a stronger version than

the one given here, and it makes additional assumptions about ancillarity.

It seems to most authors, and to me, that the weak sufficiency principle is

already so uncontentious that it is better to leave it in the proof, in return

for being able to use such a weak conditionality principle.

Birnbaum pulls a similar trick: he proves the likelihood principle from

a conditionality principle slightly stronger than mine plus the following

“principle of mathematical equivalence”:

Mathematical equivalence (M): If f (x, θ) = f (x′, θ) for all θ ∈ Ω,
then Ev(E, x) = Ev(E, x′).

(Birnbaum 1972, p. 858)

Dawid (1977, p. 249) gives a proof of the principle of mathematical equiv-

alence from the transformation principle which we met in chapter 7 plus

the assumption that the description of a statistical observation such as the

one given in chapter 2 in terms of X , xa and H is complete: this second

assumption rules out structural inference (chapter 4) and pivotal inference

(chapter 5).

According to Pratt (1962, pp. 314–315) and Birnbaum (1972, p. 861)

it is also possible to eliminate the conditionality principle by replacing it
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with a Weak Relabelling Principle implied by Pratt’s voltmeter example

which I discussed in chapter 7. Pratt’s relabelling principle is:

A relabelling of possible outcomes which does not affect the
outcome actually observed surely should not change an inference
or decision.

(Pratt 1961, p. 166)

Pratt sketches a proof of the likelihood principle from this relabelling

principle:

However, there are almost always such relabellingswhich change
theP-value and hence may change an inference or decision based
on a significance test. Suppose, for instance, an experiment
has possible outcomes a, b, · · · , z. Suppose Meter 1 tells the
outcome, while Meter 2 tells only whether the outcome was or
was not d . If in fact the outcome is d , you would learn this
from reading either meter and would want, therefore, to make
the same inference or decision; yet the result of a significance
test would ordinarily depend on which meter you were reading.
A direct continuation of this argument shows an inference or
decision should depend on the probability under the possible
hypotheses of the outcome observed only (and on this only up
to multiplication by a constant). The use of the probabilities
of other outcomes also, as in the Neyman-Pearson formulation,
inevitably leads to inconsistencies.

(Pratt 1961, p. 166)

Why does Pratt say that a Frequentist analysis “would ordinarily depend

on which meter you were reading”? Because using Meter 1 forces a

Frequentist to use a detailed ordering of possible outcomes — either the

obvious numerical ordering or some other fixed ordering, sayO—in order
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to calculate a P-value (for reasons explained in detail in chapter 7). Meter

2 prevents us from having such a detailed ordering: the only possible

orderings based on Meter 2 are < d , not-d > and < not-d , d >. Hence —

and this is where the caveat “ordinarily” comes in — we will get different

P-values from Meter 1 and Meter 2 unless it happens that the detailed

ordering and the coarse ordering coincidentally give the same result . . .

which is unlikely unless d happens to be at the very top or the very bottom

of the ordering used with Meter 1. This is not “ordinarily” the case, as

we can see from the fact that the value of d is completely arbitrary: some

particular values of d are at the top or bottomof the orderingO of a, b, · · · , z,

but most are not. Hence Pratt’s example is extremely general. All that

remains to turn it into a proof of the likelihood principle is a bit more

precision (especially a plausible definition of “inconsistency” which covers

this case — a role played by theWCP in my proof), plus an extension from

the theory of P-values to Frequentist theories in general. Indeed, Pratt’s

example is sometimes cited as the first proof of the likelihood principle

(Berger & Wolpert 1988), although this seems to me to be stretching the

notion of proof a little.

Of course such a relabelling principle is almost identical to the Weak

Conditionality Principle: the main difference between them is that in the

Weak Relabelling Principle the choice (as it were) of a censored or a non-

censored observation may be part of a single run of a single experiment,

whereas in the Weak Conditionality Principle it is a separate coin toss.

It seems to me that the latter is even more clearly irrelevant to what we

ought to infer than the former, and consequently in the next section I will
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present a proof of the likelihood principle from the Weak Conditionality

Principle rather than from the Weak Relabelling Principle.

I call Pratt’s relabelling principle the Weak Relabelling Principle

(this is my own terminology, unlike “Weak Conditionality Principle”) be-

cause Pratt himself objects to a stronger relabelling principle suggested

by Birnbaum. Birnbaum’s relabelling principle, also known as a principle

of mathematical equivalence, is as follows:

let (E, x) and (E′, y) be any two instances of statistical evidence,
with E and E′ having possibly different mathematical structures
but the same parameter spaceΩ = {θ}. Suppose that there exists
a one-to-one transformation of the sample space of E onto the
sample space of E′ : y = y(x), x = x(y), such that the probabilities
of all corresponding (measurable) sets under all corresponding
hypotheses are equal: Prob(Y ∈ A′|θ) = Prob(X ∈ A|θ) if
A′ = y(A). Then the models E and E′ are mathematically equiva-
lent, one being a relabelling of the other. If respective outcomes
x of E and y of E′ are related by y = y(x), they also are mathe-
matically equivalent, and the two instances of statistical evidence
(E, x) and (E′, y) may be said to have the same evidential mean-
ing: Ev(E, x) = Ev(E′, y). A simple concrete example is that of
models of measurements which differ only in the units in which
measurements are expressed.

(Birnbaum 1962, pp. 277–278)

This version of the relabelling principle is much stronger than Pratt’s,

because in Pratt’s the relabelling cannot assign different values to the

outcome which actually occurred (xa), while in Birnbaum’s it can. Pratt’s

objection to the stronger principle is as follows:

I believe there is more to relabelling than meets the eye when
the framework is left abstract [as it is in Birnbaum’s relabelling
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principle]. It is not merely a matter of interchanging the labels
attached to the states of nature. What is really involved is inter-
changing the distributions attached to the states of nature. An
example, over-simplified to bring it into a two-state framework,
would be this. If a certain drug has no effect, it helps the same
proportion of patients as a placebo, which, let us say, is 25 per
cent; if it has an effect, it helps 40 per cent. Relabelling does
not mean that the two states are called 2 and 1 rather than 1
and 2 respectively. It seems to me relabelling gives a situation
where no treatment effect means 40 per cent are helped and effect
means 25 per cent are helped, instead of no effect meaning 25 per
cent are helped and effect 40 per cent. This makes no physical
sense to me, and accordingly I don’t feel compelled to accept
equal prior probabilities in Jeffreys’ framework. . . . two samples
giving the same likelihood on the same parameter space need not
logically have the same evidential meaning unless the physical
interpretations of the parameters are identical in the two cases.

(Pratt 1962, pp. 315–316)

This amounts to the complaint that a relabelling may incorrectly over-ride

prior knowledge of the sort which a Bayesian would incorporate using a

probability distribution. (I say this because the fact that there is any lack of

symmetry between the phrases “effect” and “no effect”, which is the basis of

Pratt’s complaint, is a piece of prior, non-mathematical knowledge.) Pratt

ought to observe that this same complaint applies to his Weak Relabelling

Principle. However, had he noticed that, he could have replied that it has

less force against his own principle than against Birnbaum’s, because in

his own principle we can at least be sure that we are not interchanging an

actual state of nature with a non-actual one.

Be that as it may, this discussion is only indirectly relevant to the issue

of alternative proofs of the likelihood principle: it has no direct impact on
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the rest of this thesis, since I do not use either relabelling principle in

my proof of the likelihood principle. Moreover, I make it part of my

statement of the likelihood principle that Pratt’s requirement that “the

physical interpretations of the parameters are identical in the two cases”

is met. I do this by insisting that two likelihood functions are considered

equal only if all their variables have the same meanings.

We might wonder whether either relabelling principle is implied by

the likelihood principle, in which case of course I am committed to it. The

answer is that Pratt’s weak principle is implied by the likelihood principle

but Birnbaum’s stronger principle is not, as we can see from the fact that

orthodox Bayesian inference is compatible with the likelihood principle and

yet can take into account prior knowledge such as the difference between

“effect” and “no effect” (when such a difference exists).

3. A PROOF OF THE LIKELIHOOD PRINCIPLE
FROM THEWSP AND THEWCP

PROOF OF THE LIKELIHOOD PRINCIPLE

Recall the likelihood principle:

Terminology

i By “inferences” I mean any beliefs and partial (probabilistic) beliefs

which are held or followed and any actions which are taken, as delib-

erate results of an observation.
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ii xa denotes a vector representing all observations considered relevant

to any of the hypotheses in some set H . xa can be purely observa-

tional: it need not result from one or more deliberately constructed

experiments.

iii By “inferences about hypotheses” I mean any inferences about the

hypotheses in H : such inferences must not mention any hypotheses

not contained in H except that they may (trivially) mention any

hypotheses whose truth is not in doubt and any hypotheses on which

xa has no bearing.

iv Two likelihood functions are considered equal if all their variables

have the same meanings within the theories represented by each

hypothesis, and if the two functions are proportional (iff (∃c > 0) (∀h)

(L1(h) = c.L2(h)).

Conditions of applicability

1. We cannot infer anything about the relative importance of the various

possible inferential errors from the observation (i.e., the loss func-

tion, or equivalently the utility function, is either independent of the

observation or unimportant).

2. The choice of observation is not informative about the hypotheses, only

its outcome.

3. The Well Defined Likelihood Function condition: (perhaps trivially)

for each hypothesis h under consideration in a statistical analysis,

ph(xa) ≡ p(xa|h) must be well defined (i.e., have a single value).

The likelihood principle
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Inferences from observations to hypotheses should not de-
pend on the probabilities of observations which have not
occurred, except for the trivial constraint that these probabili-
ties place on the probability of the actual observation under the
rule that the probabilities of exclusive events cannot add up to
more than 1.

Consider two statisticalmeasurementsM1 = (X1,H , p1) andM2 = (X2,H , p2).

Next, consider the mixed merrimentM ∗ (which was defined in state-

ment of the weak conditionality principle as follows: a fair, epistemically

indeterministic coin is tossed; according to its outcome, one of the merri-

mentsM1 andM2 is performed). Now suppose that whichever merriment

hasn’t been performed yet is also performed. At this stage we have an

outcome x1 from M1, an outcome x2 from M2, an outcome j indicating

which experiment was performed first (j = 1 forM1 and j = 2 forM2), and

an outcome fromM ∗. The outcome fromM ∗ is J = 1 or 2 and x∗ = x1 or

x2. The possible outcomes are denoted (j , xj ).

Then let t0 = (0, 0) and consider the statistic

T(j , xj ) = t0 if (j , xj ) = (1, x1) or (2, x2)

= (j , xj ) otherwise.120

Is T a sufficient statistic for h? Generally, no. Recall that T is a sufficient

statistic for h iff p can be factorised as

120. The otherwise clause can never represent an actual outcome, since I have defined the
indexing of the merrimens in such a way that only (1, x1) can occur if M1 is performed first
and only (2, x2) can occur ifM2 is performed first. The fact that other outcomes cannot occur
need not stop us considering their mathematical properties. According to the likelihood
principle we should not base inference procedures on such properties; but we are currently
proving the likelihood principle and so cannot assume it to be true. And even if we were able
to assume it to be true at this point we could still consider such properties, even though we
would have to refrain from endorsing inference procedures based on them.
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(∀h ∈ H ) p(j , xj |h) = T′(T(j , xj ), h) . p(j , xj |T(j , xj )).

There need not, in general, exist a suitableT′ tomatch our choice ofT . But

suppose that the likelihoods of x1 and x2 are equal (i.e., p1(x1|h) ∝ p2(x2|h),

or (∃k > 0)(∀h ∈ H )(p1(x1|h) = k. (p1(x1|h)). To prove the likelihood

principle, we require to show that T is now sufficient for h. Let T′ be as

follows:

T′((j , xj ), h) = 1
2p1(X = x1|h) +

1
2p2(X = x2|h), if (j , xj ) = t0

= p(j , xj |h) otherwise.

Then

T′(T(j , xj ), h) = 1
2p1(X = x1|h) +

1
2p2(X = x2|h), if (j , xj ) = (1, x1) or (2, x2)

= p(j , xj |h) otherwise.

To calculate p(j , xj |T(j , xj )) (the final term in the sufficiency equation), note:

p((1, x1)|T = t0, h) = p∗(J = 1|T = t0, h) . p1(X1 = x1|T = t0, h)

= 1
2p1(X1 = x1|T = t0, h)

=
1
2 p1(X=x1|h)

1
2 p1(X=x1|h) +

1
2 p2(X=x2|h)

p((2, x2)|T = t0, h) =
1
2 p2(X=x2|h)

1
2 p1(X=x1|h) +

1
2 p2(X=x2|h)

, by symmetry

p((j , xj )|T = (j , xj ), h) = 1, (j , x) 6= t0.

Now we can check the sufficiency equation:

If J = 1,X1 = x1 then

T′(T(j , xj ), h) . p(j , xj |T(j , xj ))

= 1
2p1(X = x1|h) +

1
2p2(X = x2|h)×

1
2 p1(X=x1|h)

1
2 p1(X=x1|h) +

1
2 p2(X=x2|h)

= 1
2p1(X = x1|h)

= p(j , xj |h).
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By symmetry, if J = 2,X2 = x2 then

T′(T(j , xj ), h) . p(j , xj |T(j , xj )) = p(j , xj |h).

And for all other (J ,XJ ),

T′(T(j , xj ), h) . p(j , xj |T(j , xj )) = p(j , xj |h)× 1.

This establishes that T is sufficient for h.

It follows the sufficiency of T for h and from the weak sufficiency

principle
(
applied to the fact that (T(1, x1) = T(2, x2)

)
that no inference

about h is valid on observation (1, x1) in the mixed experiment unless it is

also valid on (2, x2).

Now recall that j is chosen by a fair, indeterministic coin toss. Con-

sequently, the weak conditionality principle applies. It tells us that no

inference about h is valid on (1, x1) unless it is also valid on x1 alone. (x1

corresponds toM1 in my formal statement of the weak conditionality prin-

ciple above.) In other words, the observations (1, x1) and x1 are equivalent

in terms of the inferences they license. Similarly, the observations (2, x2)

and x2 are equivalent in terms of the inferences they license. And we de-

termined in the previous paragraph that the observations (1, x1) and (2, x2)

are equivalent in the same sense. Hence, the observations x1 and x2 license

the same observations as each other.121 Consequently, no inference is valid

on x1 (regardless of the value of j) unless it is also valid on x2.

We have proved this for any x1 and x2 with equal likelihoods under the

models under consideration (p1(x1|h) ∝ p2(x2|h)). It follows that any two

observations which share likelihood functions must share inferences about

any unknown parameters mentioned by their statistical models, provided

121. To summarise this paragraph: if we write “≡” for “license the same observations as
each other”, we have just shown that x1 ≡ (1, x1) ≡ (2, x2) ≡ x2. The relation ≡ is
transitive, so x1 ≡ x2.
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only that those unknown parameters index the same set of hypotheses for

both.

The proof so far is sufficient to prove some versions of the likelihood

principle, including Barnard’s (1947) and Birnbaum’s (1962) (see chapter

8). I am grateful to Daniel Steel for pointing out to me that the proof so far

is not sufficient to prove all versions of the likelihood principle, because it

leaves one important question ambiguous. Steel distinguishes (in personal

communication) between two statements:

(1) If p(x1|h) = p(x2|h) then x1 and x2 have the same evidential impact on

h.

(2) If p(x|h1) = p(x|h2) then x has the same evidential impact on h1 as on

h2.

I have already proved (1), by proving that if p1(x1|h) ∝ p2(x2|h) then no

inference about H (and hence about any h) is valid on x1 unless it is also

valid on x2. But many versions of the likelihood principle, including mine,

also imply (2). So it is necessary to extend the proof to handle this issue.

Consider any merrimentM = (X ,H , p), label the outcome ofM x (as

usual), and based on M and x define a new merriment M
⊙
= (Y ,H , pY )

where Y is 1 or 0 according to whether X = x or not, thus:

Y =
{
1 if X = x
0 if X 6= x

(1)

so that:

p(Y = 1|h) = p(x|h) and p(Y = 0|h) = 1− p(x|h). (2)
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So (∀h) pY (Y = 1|h) ∝ p(x|h): the observations Y = 1 and x share

likelihood functions. Hence no inference is valid on the observation of x in

M unless it is also valid on the observation of Y = 1 in M
⊙
. (All this is

a trivial consequence of the part of the likelihood principle already proved

above.) So we should ask which inferences are valid on the observation of

Y = 1 inM
⊙
.

If all we know is that Y = 1, whatever we can infer about H from X

and x must be a function of the functions of X and x that appear in the

description ofM
⊙
. But the only such functions are p(x|h) and 1− p(x|h)

(from (2), or directly from (1) if you prefer). But these are just the likelihood

function of x and 1 minus the likelihood function of x. And, in particular,

no mention of any part ofX except x is made in the description ofM
⊙
. So

all inferences from M
⊙
and hence from M must depend functionally on

x only via the likelihood function, and in particular no inferences from M

may use probabilities of any part of X except the part which was actually

observed.

This establishes the full likelihood principle.

To see that it establishes (2) along the way, note that I have proved

that inferences from x to h must depend on x only via p(x|h). So inferences

from x to h1 and h2 must depend on x only via p(x|h1) and p(x|h2). When

these are the same, as in (2), the inferences must be the same.

The premises used in this proof are exactly the minimum needed to

prove the likelihood principle, as can be proved by proving the premises

from the likelihood principle. I will do this by showing that it implies each

of them separately. (Since it is implied by both of them jointly, it must then
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be equivalent to the union, since if (a ∧ b) ⇒ c and c ⇒ a and c ⇒ b then

c ⇔ (a ∧ b).)

It follows directly from the likelihood principle that the correct con-

clusion in Cox’s example is to ignore the characteristics of the laboratory

not used. To prove the the weak conditionality principle given above (the

formal version of the obvious solution to Cox’s paradox), we note that in

merrimentM ∗,

p(j , xj |h) =
1
2
pj (xj |h) ∝ pj (xj |h).

So M ∗ and Mj have proportional likelihood functions, where Mj is the

measurement chosen by the coin toss. HenceM ∗ andMj licence identical

inferences. Hence onlyMj matters.

To prove the weak sufficiency principle from the likelihood principle,

note that if T is sufficient for H then (by definition) p(X|T(X)) is inde-

pendent of h. If T(x1) = T(x2) (as in the premises of the weak sufficiency

principle) then p(x1|T(x1), h) = p(x2|T(x2), h). Then p(x1|h) = p(x2|h) —

x1 and x2 have identical likelihood functions. So, by the likelihood principle,

any inference procedure should draw the same different conclusions from

x1 as from x2.

This completes the proof that the likelihood principle is logically

equivalent to the conjunction of the weak conditionality principle and the

weak sufficiency principle.

HOW THE PROOF ILLUSTRATES THE LIKELIHOOD PRINCIPLE

The only functions we needed to consider in the proof of the likelihood

principle were p1(x1|h), p2(x2|h), pY (y|h) etc., all considered as functions of

h:
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Figure 17

The exciting thing about the likelihood principle is that only p(xa|h) is

relevant to any inference about H . In stark contrast, as we saw in chapter

4 almost all statistical methods in common use rely on p(x|h0), considered

as a function of x (fixing a single hypothesis and imagining the observation

varying). This function is, in general, quite unrelated to any of the above

functions:
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Figure 18: The shape of the graph p(x|h0) doesn’t matter

The likelihood principle says that the shape of this graph is totally irrele-

vant to inferences from any actual observation (or set of observations —

recall that x is generally a vector).

THE LIKELIHOOD PRINCIPLE FOR INFINITE HYPOTHESIS SPACES

The proofs above do not go through for arbitrary probability density

functions, because of ambiguities in the notion of sufficiency (Basu 1975)

(Evans et al. 1986) (Berger & Wolpert 1988, pp. 28-30). But they do go

through (with very minor modifications) for continuous functions, where a

continuous function is one such that the preimages122 of topologically open

sets are topologically open sets (Berger & Wolpert 1988, p. 30) (Bjørnstad

1996).123 Any function whose graph can be drawn without taking the

122. The preimage of a set A is the maximal set whose members map onto members of A by
the function in question.123. In the real numbers, topologically open sets are those which have the form of the union
of a finite number of intervals (a, b), not including the endpoints a and b.
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pen off the paper is continuous. The topological definition is needed to

make this idea precise and to generalise it to arbitrary spaces. All of

the functions commonly used as probability density functions in applied

statistics are continuous.

For the sake of completeness, and because the notation is pretty, I

quote the following theorem of Berger and Wolpert, which is proved from

measure-theoretically more sophisticated versions of the weak sufficiency

principle and weak conditionality principle. The theorem shows that the

likelihood principle applies to some (in a sense, most) non-continuous

infinite hypothesis spaces.

Let φ : U1 → U2 be a Borel bimeasurable one-to-one mapping
from U1 ⊂ ℵ1 onto U2 ⊂ ℵ2, and suppose there exists a strictly
positive function c on U1 such that for all θ ∈ Θ,

pθ(A) =
∫
φ−1(A)

1
c(x1)

pθ(dx1), A ⊂ U2.

Then if an inference can only be drawn from the observation x if
it can also be drawn from the observation φ(x), for all x except
for a set of probability zero (regardless of the value of θ). If it
is agreed to ignore the possibility of events of probability zero
then inferences aboutΘmay depend on ℵ1 and ℵ2 only via x and
φ(x).

(Adapted from Berger & Wolpert 1988, pp. 33-34)

Taken together with my proof above, this shows that the likelihood prin-

ciple is true for any finite set of hypotheses and for any parametric infinite

set of hypotheses and for many non-parametric infinite sets of hypotheses.
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BJØRNSTAD’S GENERALISATION
OF THE LIKELIHOOD PRINCIPLE

Bjørnstad has proved a version of the likelihood principle which applies

even when the hypotheses to be examined depend on the observed data.

This is a case which is excluded by my general framework, but I will

briefly state Bjørnstad’s theorem because it holds the prize as the most

general version of the likelihood principle to have been proved to date.

In particular, Bjørnstad’s theorem is applicable even to instances of the

prediction problem (see chapter 2), in which θ is a function of x.

DefineM as (X , h, p) as previously, but this time let the quantity
about which we wish to draw inferences be not h but λ, and let
λ be a function of x, thus:

λ = λ(y,ψ), where ψ represents the unknown quantities
which are being treated as variables. Let θ represent the un-
known quantities which are being treated as parameters.

Let h = (ψ, θ).
Then inferences from x ∈ X to λmust be depend on x only

via the ordered pair
〈
λ, p(x|λ, θ)

〉
. The first term in this pair is

new. The second term is a likelihood function, but not the same
likelihood function as in the simpler case proved above (in which
it was p(x|h)).

See (Bjørnstad 1996) for a proof of this principle.

In real scientific cases λ(x) is often independent of x, and in this com-

mon case Bjørnstad’s likelihood principle reduces to the simpler likelihood

principle proved above.

This concludes my discussion of proofs of the likelihood principle. In

the next chapter, I give, and answer, objections which have been raised to

proofs similar to mine.
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— 14 —
Objections to Proofs of the Likelihood Principle

As yet the literature contains no objections specifically directed at my proof

of the likelihood principle. But my proof is similar enough to proofs given

by (Birnbaum 1962, Birnbaum 1972) and (Berger & Wolpert 1988) that

objections to those proofs, if they succeed, may plausibly defeat my proof

as well.

The relationship between my work and the work of other authors in

this chapter is a little different from the situation with regard to objections

to the likelihood principle. I believe that my version of the likelihood

priciple is immune to many criticisms which were valid criticisms of earlier

versions of the principle; but I do not believe my proof is such a big

improvement on earlier proofs that serious objections to the earlier proofs

fail to apply to my proof. This is why I do not trouble the reader’s patience

by reproducing the earlier proofs.

I will show that none of the objections to earlier proofs that I am aware

of succeed either as criticisms of my proof (as I demonstrate explicitly) or

(implicitly) as criticisms of Birnbaum’s or Berger and Wolpert’s proofs.

1. OBJECTION 14.1
THE WSP IS FALSE

Evans, Fraser and Monette claim that the Weak Sufficiency Principle is

false, on the following grounds. I must quote at length, because the
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essential part of their objection — the third paragraph below — is not

phrased as an objection. The fact that it is intended to be an objection only

becomes clear in context.

[T]he general deficiency of the ordinary statistical model pro-
vides the mechanism for the proofs giving the paradoxical re-
sults.

Given the disturbing consequences of Birnbaum’s formula-
tion of the common principles [theWSP and theWCP, defined in
chapter 13], we examine more closely the meaning and uses of a
principle. We recall that cont(I1) = cont(I2) means that I1 and I2
contain the same information concerning the parameter θ. We
. . . question to what degree a statistical principle is merely the
statement of [such] an equivalence.

Consider the sufficiency principle. . . . the sufficiency prin-
ciple as described above [my WSP] asserts that [x and a suffi-
cient statisticT(x)] contain the same information. Operationally,
however, the principle . . . seems to imply more: that we should
replace [x] by [T(x)] for purposes of inference. For associated
with any inference base is a wealth of inference procedures that
can commonly be invoked, and in replacing [x] by [T(x)] we are
restricting this class, unless of course [T] is trivial. In this sense
sufficiency can be viewed as an operational step towards cont, and
would be more than a mere statement of equivalence.

. . . Birnbaum did not address these aspects of the principles,
only treating them as equivalence relations. Accordingly his
proofs . . . allow the use of the principles in contexts where the
justification for the principles is violated. Such applications are
clearly inappropriate and indicate at least that some clarification
is needed of the principle, or of the application context

(Evans et al. 1986, pp. 191–192)
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It seems to me that Birnbaum’s proofs are not subject to this objection,

but I cannot show that without a considerable aside on Birnbaum’s work.

Instead, I will merely defend my own proof.

There is a little confusion in this objection. Neither I nor otherwriters

on the likelihood principle say that one must replace x with an arbitrary

sufficient statistic T(x). It would clearly be daft to say that, since there are

many such sufficient statistics. Nor do I assert that the WSP says that one

must do this.

Perhaps Evans, Fraser andMonette believe that theWSP is obviously

false. However, they do not give any arguments against it apart from the

above argument which, as I have just shown, misses its target. So, although

Iwould like to support theWSPagainst objections, there is nothing explicit

for me to argue against. Instead, I refer to the arguments I gave in favour

of the WSP in chapter 13, and hope that the considerations I used there

outweigh whatever considerations lie behind Evans, Fraser and Monette’s

objection.

2. OBJECTION 14.2
THE WCP IMPLIES THAT IT SHOULD BE

IRRELEVANTWHICH MERRIMENT OCCURS

In addition to objecting to the WSP, Evans, Fraser and Monette object to

a class of proofs of which mine is one. I will translate the objection into

the terminology of my proof, in square brackets. I do not quote the terms

fromwhich I am translating, because if I did so the objection would become

unreadably messy.
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consider a context in which a statistician who accepts [the Weak
Conditionality Principle and the Weak Sufficiency Principle]
is presented with the mixture inference base [M ∗]. Condi-
tionality indicates that the relevant model for inference about
θ is given by [M1]. On the other hand, application of [the
WSP] establishes—as is clearly seen via the sufficient statis-
tic [T(j , xj ) = t0 if (j , xj ) = (1, x1) or (2, x2), which I proved above
to be sufficient for h provided the preconditions of the likeli-
hood principle are met]—that the information as to which model
has occurred is irrelevant information for inferences about [h].
The statistician is presented with contradictory recommenda-
tions from these principles.

(Evans et al. 1986, p. 190)

This objection is mistaken, because theWeak Conditionality Principle does

not say that the information as to “which model has occurred” (which way

the coin toss came out and hence which merriment has been conducted) is

irrelevant to inferences about h. It says that the information as to which

model has occurred is irrelevant to inferences about h given the likelihood

function p(j , xj ). This is just as it should be: we need to know which

merriment has been made, since otherwise we could not interpret the

results. But we don’t need to know which merriment has been made once

we have the likelihood function, since ex hypothesi it is the same for each.

Of course these recommendations are only correct if the likelihood principle

is correct, but even if the likelihood principle iswrong the recommendations

are not (as Evans, Fraser and Monette claim) contradictory.
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3. OBJECTION 14.3
THE PROOF FAILS IF THE WCP IS LIMITED

TO CONDITIONING ON A MINIMAL
SUFFICIENT STATISTIC

Aminimal sufficient statistic is a sufficient statistic t(x) such that any other

sufficient statistic T(x) depends on x only via t(x). Minimal sufficient

statistics do not always exist, and when they do they are not always unique.

Durbin (1970) shows that if the WCP is restricted to conditioning on

a minimal sufficient statistic it can no longer play the role it is required to

play in (Birnbaum’s, or my) proof of the likelihood principle.124

Why might one possibly think that the WCP should be restricted in

this way? Durbin only sketches an answer:

Birnbaum’s sufficiency principle [similar to the WSP] implies
that, as a function of the observations, evidential meaning de-
pends only on the minimal sufficient statistic, where this exists
. . . Since evidential meaning depends only on the minimal suf-
ficient statistic it would seem reasonable to require that any
analysis or interpretation of the results of the experiment should
depend only on the value of the minimal sufficient statistic. This
leads naturally to the requirement that the domain of applicabil-
ity of (C) [roughly, theWCP] should be restricted to components
of the minimal sufficient statistic.

(Durbin 1970, pp. 395–396)

124. I am not sure that this point is intended by Durbin himself to be an objection to a
proof of the likelihood principle, but it has been cited as an objection of this sort, without any
elaboration, by a number of other authors.
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In this passage, Durbin talks about conditioning only on “components of ”

minimal sufficient statistics. He does not say what he means by “compo-

nents of ” a statistic, and he does not use this qualification anywhere else

in his paper, so we must consider the possibility that it is a typographical

error; however, his argument is much more plausible if it is not a typo-

graphical error but is, rather, what he means to say throughout his paper.

I therefore consider both possibilities.

OBJECTION 14.3.1
THEWCP SHOULD BE LIMITED TO CONDITIONING

ON A MINIMAL SUFFICIENT STATISTIC

For the duration of this section, I ignore the idea of “components of ” a

minimal sufficient statistic, and take it that Durbin is asserting that the

WCP should be restricted to conditioning on a minimal sufficient statistic

itself. Then Durbin’s argument may be paraphrased as follows: in some

cases, evidential meaning depends only on the minimal sufficient statistic

(assuming the WSP is true; if not, then of course any proof based on

it is unsound); but one should only condition on evidentially important

variables; hence one should condition only on minimal sufficient statistics

in general and, a fortiori, in applications of the WCP.

It is true that according to Birnbaum’s proof only sufficient statistics

(and hence only minimal sufficient statistics, where such exist) are evi-

dentially important to inferences about H . This follows from Birnbaum’s

sufficiency principle, which is as follows:

Principle of Sufficiency (S): Let E be any experiment, with sample
space {x}, and let t(x) be any sufficient statistic (not necessarily
real-valued). Let E′ denote the derived experiment, having the
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same parameter space, such that when any outcome x of E is
observed the corresponding outcome t = t(x) of E′ is observed.
Then for each x, Ev(E, x) = Ev(E′, t), where t = t(x).

(Birnbaum 1962, p. 278)

But there is no reason to restrict conditioning to “evidentially important

variables”. This is one place where Birnbaum’s proof is significantly differ-

ent frommine, formy premises say nothing at all aboutwhat is “evidentially

important”, while Birnbaum’s do. Birnbaum’s terminology of evidential

importance, as encapsulated in the sufficiency principle above, may suggest

that only evidentially important variables are important simpliciter. But

of course that need not be the case, and in applying the WCP it certainly

is not the case. For although the variables in question are (according to

Birnbaum) the only evidentially important variables for inferences about H ,

they are not the only important variables for analysis of the structure of the

merriment. A variable can be vital for the latter purpose while, on its own,

carrying no information at all about H and hence not being a sufficient

statistic, never mind a minimal sufficient statistic.125

I have shown that Durbin has no clear argument against Birnbaum’s

proof, even ifwe allow the terminology of “evidentially important” variables

on which Durbin’s argument relies. If we avoid that terminology, as I do

in my proof, Durbin’s argument becomes even weaker. Recall that the only

125. Cox’s example illustrates this point nicely. Recall that in Cox’s example the toss of a
coin determines which laboratory receives a sample of blood. In the context of the example,
H is a set of hypotheses about the blood. The result of the coin toss on its own carries
no information about the blood, and so in Birnbaum’s limited sense it is not evidentially
important for H . It is, however, prima facie reasonable to condition on it — indeed, any
statistician, even a Frequentist statistician, would condition on it (in the Frequentist’s case,
using the rationale that it is an ancillary statistic), and Durbin offers no argument against
doing so except for his incorrect assertion that the WSP tells us not to.

Note, for future reference, that the pair (coin toss, laboratory result) is a minimal
sufficient statistic for Cox’s example, and so the coin toss is in some sense a component of a
minimal sufficient statistic; I will show the importance of this in the next section.
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version of the sufficiency principle which I use in my proof, namely the

WSP, says: “If T(X) is a sufficient statistic for h, and if T(x1) = T(x2),

then any procedure that derives different inferences about h from x1 and

x2 is incoherent.” My WSP does not say that only sufficient statistics are

evidentially important, nevermind that one should condition only on them.

Durbin’s argument could perhaps be recast in terms of the incoherence of

inferences based on other than sufficient statistics, but then the fact that

it is only inferences about h which are so constrained would be even more

obvious than it was in the previous paragraphs, and hence again Durbin’s

argument would fail.

OBJECTION 14.3.2
THEWCP SHOULD BE LIMITED

TO CONDITIONING ON THE COMPONENTS
OF A MINIMAL SUFFICIENT STATISTIC

The possibility remains that Durbin’s reference to the components of a

minimal sufficient statisticwas not a typographical error. PerhapsDurbin’s

assertion is best understood as being that one should only condition on

the components of a minimal sufficient statistic. This assertion is plausibly

true, if “components of ” is taken to mean “functions which are part of a

factorisation of ” or, more weakly, “functions which are functions of ”, as

Birnbaum (1970, p. 402) suggests Durbin’s phrase should be interpreted.

But the use I make of the WCP is compatible with this interpretation of

Durbin’s assertion, except for one special case which I will deal with in the

next paragraph.

Recall that theWCP says nothingmore than that wemay condition on

the result of a coin toss in a mixture experiment such as the Cox example.
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As I mentioned in the previous section, the coin toss is a component of

the pair (coin toss, laboratory result) which in turn is a minimal sufficient

statistic for Cox’s example; similarly, in the terminology of my proof,

the result of the coin toss, j , is a component of the pair (j , xj ), which is

minimal sufficient for the mixed merrimentM ∗. Hence Durbin’s assertion

is compatible with my use of the WCP, which is merely to condition on j ,

except for one special case which must be dealt with separately.

Berger & Wolpert (1988) interpret Durbin as I do in this section —

that is, as saying that we may condition on any part of a factorisation of a

sufficient statistic — and perhaps it was stupid of me to consider any other

interpretation. Berger & Wolpert also note that a special case arises when

the two experiments which are performed as a result of the coin toss of

the WCP happen to give results x1 and x2 which have proportional likeli-

hood functions
(
(∃c) (∀h) p(x1|h) = c. p(x2|h)

)
. In this case alone, the coin

toss is not part of any (non-trivial) factorisation of the minimal sufficient

statistic, since the minimal sufficient statistic in this case is the (shared)

likelihood function. So it follows from Durbin’s assumption that the like-

lihood principle as it applies to this particular case cannot be considered

proved. However, considering such a case makes it particularly clear why

we should not accept Durbin’s assertion. Berger and Wolpert illustrate

this by applying Cox’s example to two laboratories, one in California and

one in New York:

by Durbin’s argument, whether or not one chooses to condition
on the actually performed California experiment with observa-
tion [xa = x1, say] would depend on the existence, or lack thereof,
of an observation [x2], in the unperformedNewYork experiment,
having a likelihood function proportional to that of [x1]. Such
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dependence of conditioning on the incidental structure of an
unperformed experiment would be rather bizarre.

(Berger & Wolpert 1988, p. 46)

Berger andWolpert are content to let their case rest there. To clarify why,

note that although Frequentist theory says that the possible outcomes of

unperformed parts of mixed experiments are relevant because they form

part of the sample spaceX , Durbin’s assertion entails that somethingmuch

more complicated: that the whole likelihood function p(x2|h) of an unob-

served part of X is relevant to inference if it happens to be proportional to

p(x1|h) but not otherwise. I cannot see any reason to accept this and, as far

as I know, no argument in its favour has ever been presented. (Certainly

Durbin presents none.) Savage (1970) points out that the inherent implau-

sibility of this idea is exacerbated by the fact that it makes p(x2|h) relevant

only if it is exactly proportional to p(x1|h), but otherwise completely irrel-

evant; hence, if there is any doubt at all about the exact value of any part

of p(x2|h), Durbin’s argument becomes impossible to apply. It seems to me

that this is a sufficient argument against Durbin’s assertion in its second

interpretation.
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— 15 —
Consequences of Adopting the Likelihood Principle

In this chapter I first of all give a case study which I hope will make clear

the importance and urgency of the likelihood principle. I then consolidate

a number of theoretical conclusions which I have drawn in the thesis as a

whole, and present some of their general implications for applied statistics

and hence for most of science.

1. A CASE STUDY

INTRODUCTION

It is now time to consider an example more realistic than that of Table 1.

In this case study, I will describe an area of scientific enquiry — namely,

large clinical trials — which has been extensively studied but in which no

consensus has been achieved on the best method of statistical inference.

I will sketch the history of the study of inference methods in this area.

The history will show particularly clearly the ad hockery of Frequentist

methods: Frequentist methods in this case are so ad hoc that not even

the most committed Frequentists have been able to claim that there is any

unique optimal Frequentist solution to the inference problem (at least, not

to date). Literally dozens of Frequentist methods are available, no two of

which give equivalent results (with trivial exceptions), and no method for

choosing between them is available to Frequentists.
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As a matter of pragmatics — and the applied statistics community

is nothing if not pragmatic — the statisticians who design clinical trials

would benefit enormously from standardising on a single method, so that

their results could not be challenged by regulatory authorities, drug com-

panies or consumers.126 Therefore, clinical trials centres have attempted

to standardise on a single Frequentist method; but the methods are so ad

hoc, and there is so little to choose between them, that they have not been

able to do so. Of course the failure to standardise has depended on social

issues as well as technical issues; but the technical issues have not been

irrelevant. The result, to date, is that two or three Frequentist methods

have become popular but none has become dominant. This lack of stan-

dardisation in itself represents a major scientific problem, in addition to

the further problem that Frequentist methods are (as I have argued) often

uninformative about H .

In this case study I will describe an obvious solution to the problem

which is compatible with the likelihood principle. This will be a Subjective

Bayesian solution. This solution does not suffer from any of the ad hocness

of the Frequentist solutions, but it has not been acceptable to regulatory

bodies for two reasons:

1. its subjective nature is fundamentally unacceptable to public regula-

tors (rightly or wrongly); and

2. its Frequentist error rates have not been known until recently.

126. The ability for a plaintiff to challenge a scientific result depends almost entirely on
whether the result was achieved using standard methods, and practically not at all on whether
the result was achieved using rational methods.
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I will describe amodification of the Subjective Bayesian solutionwhich

remains compatible with the likelihood principle butwhich avoids the above

two objections: it is not subjective (it does use prior probabilities, but they

are not set subjectively), and its Frequentist error rates are known and,

moreover, are excellent.127

This case study will show that the likelihood principle can be used

to formulate methods which are less ad hoc, as well as (as the main part

of this thesis has argued) more epistemically coherent, than the orthodox

Frequentist methods. It will thus demonstrate that the arguments of

this thesis have practical importance. My main aim in giving this case

study is to show the beneficial effects that have accrued to the sections

of the statistical community that accept the likelihood principle, and the

otherwise intractable problems that have been faced by the sections of the

statistical community that do not accept it.

I present this study in some historical detail. I concentrate on the

philosophical aspects of the history, but not to the exclusion of the scientific

details. There is a rationale for this. Philosophers’ toy examples of scientific

practice, of the sort I have used up to this point, are unsafe: one can never

be sure to what extent the lessons learned from them are relevant to what

scientists actually do, unless one checks them against a real example which

is sufficiently complicated to have some hope of being a fair representative

of science as it is practised. This case study therefore uses a reasonably

complicated example of scientific practice, alluding (although necessarily

127. Mayo objects to non-Frequentists citing the good Frequentist error rates of likelihood
methods as a reason to use those methods, but I do not see the force of her objection. It is
true that a non-Frequentist does not believe that it is rational to care about error rates, but it
is extremely rational to want to use a method which one’s opponents consider to be rational,
both for social reasons and just in case one’s philosophy turns out to be wrong.
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briefly) to a number of complexities which bear on the importance of the

likelihood principle and which would not be evident in a simpler example.

SEQUENTIAL CLINICAL TRIALS

My case study is on stopping rules for large clinical trials.128 Meier has

nicely introduced the importance of such stopping rules by comparing

clinical trials to the agricultural trials with which Fisher was familiar

when he developed the methods described in chapter 4:

The planning, execution, and analysis of an agricultural field
experiment are all well separated in time. The intended design,
if properly executed, will be the framework for the final analysis.
Long-term clinical trials, by contrast, are still recruiting patients
when the findings of analysis begin to emerge. These findings
may quite properly cause the design to change in radical ways
— even, on occasion, leading to early termination of the study.

For a time it was possible to consider such decision making
as outside the domain of statistical analysis and to regard it
rather as the intrusion of extrastatistical humane considerations
that caused us on occasion to terminate or alter an ongoing study.

More recently it has become clear that the possibility of
changes in the study brought about by early findings is not a
rare incursion by extrascientific elements but rather a necessary
and typical feature of this type of clinical experimentation.

(Meier 1981, p. 340)

128. I introduced the idea of a stopping rule in chapter 12: recall that a stopping rule is an
agreement by experimenters and statistical analysts to execute an experiment in parts, with
each part being subjected to a pre-agreed type of statistical analysis as soon as possible after
its completion, and with the series of sub-experiments guaranteed to terminate “early” (before
some pre-agreed maximum sample size has been reached) if one of the analyses has some
pre-agreed outcome. Typically the only outcome which is allowed to cause early termination
of the experiment is a pre-agreed death rate among the experimental subjects. (There is some
ambiguity in “allowed to”, but that need not concern us here.)
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The outcome (typically, the number of deaths) required to trigger early

termination of a clinical trial is typically, but not necessarily, worked out by

calculating a pre-agreed level of significance against some pre-agreed null

hypothesis. If the null hypothesis is considered refuted then the treatment

is considered to have been proved efficacious, and the trial stops. If the null

hypothesis is not considered refuted then the trial continues until some

pre-agreed sample size is reached.129

If a statistical analysis is performed after each trial subject has yielded

an outcome (typically, either dying, or living for a pre-agreed period) then

the experiment is called a fully sequential trial. If a new statistical analysis

is performed every time a new group containing a pre-agreed number

of subjects has yielded an outcome (or, equivalently, if the experiment is

analysed up to a pre-agreed number of times before it reaches its maximum

sample size), it is called a group sequential trial .130

Group sequential methods are intended to provide statistically le-

gitimate methods for monitoring accumulating data, with the possibility

of stopping a trial before it has reached its maximum size. For various

economic reasons, group sequential theory concentrates on phase III trials:

that is, large, randomised, controlled trials on a more or less representative

129. The rationale for proceeding in this way is that an experiment on human subjects is
only considered ethical (by the bulk of the medical community) if there is equipoise: that is, if
and only if the treatment given to the experimental subjects is neither confidently believed
to be efficacious (in which case it ought to be given to the control group too, thus making a
clinical trial impossible) nor confidently believed to be inefficacious (in which case it ought
not to be given to anybody, including the trial subjects). Early termination is often desirable,
either because equipoise has been lost or because it comes to seem unlikely that the trial will
reach any conclusion. The marginal cost of recruiting new subjects to a trial is high, so trials
which will probably be inconclusive are to be abandoned as soon as possible. Various ethical
arguments can be made against each aspect of this view, but the fact that it has been the
accepted ethics of the medical research community since the second world war is enough to
make it a sine qua non of the statistical methods considered in this case study, regardless of
whether it is right.

130. I will sometimes use the more general term sequential trial to refer indiscriminately to
fully or group sequential trials.
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population which are conducted to elucidate the best therapy for a given

condition. Group sequential clinical trials gradually gained in popularity

over the period covered by my case study, especially for large trials. Nowa-

days they are almost the only method used for large drug trials (at least,

prior to government approval of drugs for population-wide use; after such

approval, different methods are used, such as comparisons of individuals

who have side effects with groups of individuals who don’t — these are

so-called case-control studies).

The case study I have chosen is typical in many ways of the problems

encountered in twentieth-century applied statistics, although it is special

in the degree to which the scientists involved have discussed issues bearing

on the likelihood principle. Indeed, the likelihood principle was first stated

as a contribution to the debate I will present (Barnard 1947), and this first

statement of the likelihood principle was immediately followed (within a

few words) by the stopping rule principle (defined in chapter 12).

In this case study, in keeping with the rest of the thesis, I treat

the statistical analysis of clinical trials as a problem of inference about

hypotheses, as opposed to treating it as decision theory. There have been

many attempts to use decision theory to formulate sequential methods, but

they are relatively unimportant, because the main question which is asked

in a medical context is not “how can we maximise benefit?” (although

this may be asked occasionally, for example when a drug is prohibitively

expensive). It is usually something much simpler, which can be answered

without recourse to decision-theoretic assumptions: “how effective is this

intervention in this population?”
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The problems posed by Frequentist sequential analyses

All of the statistical methods which have been used in phase III trials

of drugs (pharmaceuticals) and clinical implants, if they have been used

as they were intended to be used, have been Frequentist and hence have

approximately fixed the overall type I error of the experiment. As I have

already discussed in chapter 7, this leads to epistemic paradoxes. These

problems are worse than usual in the case of sequential trials, and they are

joined by some brand new problems.

As we saw in chapter 4, the essence of Frequentist statistics is that a

probabilistic choice should bemade in such away as to do as well as possible

in an arbitrarily long sequence of repetitions of the situation which led to

the choice. This has been formalised in several ways, most notably by

Neyman in his theory of hypothesis tests. To recap a little, Neyman’s

theory has passed on to modern Frequentist statistics a controversial

feature: the only admissible pieces of evidence about a statistical procedure

are the properties of the procedure averaged over the sample space (X).

Properties of the procedure conditional on the occurrence of particular

events in the sample space are not relevant except as part of such an average.

This includes properties conditional on the event which actually occurs

(xa). Therefore, evidence from the experiment itself is not permissible in

characterising the procedure.

This criterion is not so very strong, in the ordinary run of things,

because if one wants to condition on an event xa which happens after an

experiment, A, has been defined, one only has to start a new experiment,

B; the design of this new experiment can then depend on xa in any way

one pleases. This is a typical Frequentist statistician’s (partial) solution to
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the problems raised in chapter 4: a Neyman non-epistemic probability can

be made to seem much more rational if this trick is executed ad libitum.131

This trick is circumvented, though, when it is not feasible to perform a new

experiment to take into account the new data — particularly in sequential

applications, where xa is recorded in an interim analysis. This point makes

sequential analysis a field of enquiry in which the differences between

Frequentist and likelihood inference are brought into particularly sharp

relief.

In addition to such basic epistemological problems of Frequentist

methods, some new mathematical problems arise in sequential trials. The

worst of these is the incompatibility of sequentially calculated P-values and

confidence intervals. In the absence of multiplicity (a concept which is ex-

plained in chapter 7 and again below), the endpoints of standard confidence

intervals are P-values, but in the presence of multiplicity they generally

are not. Since sequential trials are always subject to multiplicity, fixing

the type I error of a sequential trial generally (i.e., except in trivial cases)

causes it to provide point and interval estimates which are incompatible

with each other.

This problem is best understood by first considering a simpler prob-

lem which makes P-values problematic in their own right:

We need to be extra careful with the term statistically significant
difference in the optional stopping case. Here, one keeps taking
more and more samples until the observed difference is computed
to be statistically significant . . . The computed significance level
with an optional stopping plan refers to the significance level

131. Whether this trick is allowed by Neyman’s own theory is neither important nor clear:
as I mentioned in chapter 4, Neyman does not tell us exactly when, if ever, a reference class
can be changed, although he does strongly imply that it should not happen during a statistical
analysis.
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that would be calculated under a fixed sample size plan . . .
Say it took k tries to achieve a difference computer to be .05
statistically significant. The actual or overall significance level is
the probability that out of k tries at least one would be computed
to be .05 statistically significant, even if the null hypothesis is
true.

(Mayo 1996, p. 343)

The sequential (“optional stopping”) problem which Mayo describes for

Frequentists is very simple. Frequentists, by definition, consider it nec-

essary to design trials such that they have a predetermined overall error

rate, and the error rate which they consider it most important to fix is the

type I error (which they usually set at 5%). Analysing the results more

than once gives an overall type I error for the trial greater than the type

I error of each analysis.132 The Frequentist’s sequential problem is how

best to adjust the individual analyses in order to fix the overall type I

132. Recall that the type I error is the probability (in the non-epistemic, Neyman sense) of
rejecting the null hypothesis, conditional on the null hypothesis being true; and in repeated
analyses there is more than one opportunity to do so, so the overall type I error is greater
than the individual type I error of any of the analyses.

Why is the null hypothesis considered so important? In biostatistics the null hypothesis
is generally taken to be the statement that a treatment has no more effect than standard
treatment or a placebo (whenever such a statement is meaningful, which it always is in a large
drug trial, at least in rich countries, in which treatments are standardised). Given this, type
I error is particularly close to the hearts of clinical trial designers because of the overriding
principle of nonmaleficence: above all, the trial must not mistakenly report a new treatment as
effective. It is considered much better to risk perpetuating an inferior standard treatment.
It is almost universally held that the principle of nonmaleficence is represented in statistical
terms by a very small overall type I error. Consequently, maintaining a small type I error is
of supreme importance to trial designers.

In evaluating this position, it is important to realise that the type I error is defined as
theNeyman (pre-trial, relative to a fixed reference class) probability under the null hypothesis of
falsely claiming a positive result. This quantity is often treated, by clinicians and statisticians
alike, as though it were equal to the probability of falsely claiming a positive result — in
other words, the two italicised phrases tend to be used when the type I error is calculated but
ignored when it is interpreted. The statement that the type I error represents the principle of
nonmaleficence is an example of such a confusion. It is easy to construct artificial examples
in which it leads to absurdities, along the lines of the examples of chapter 7. Whether it
leads to absurdities in real life is a different question, and one which has been examined very
little. Certainly, one would have thought that if confusion about type I error was going to be
a problem anywhere it would be in sequential medical trials, because of the relevance of type
I error to the Frequentist’s sequential problem. We will see that this is indeed the case.
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error. It is easy to find a way to do this; what is hard is to choose the

best way from among the many (in fact, infinitely many) alternatives. It

turns out that several of the various methods of adjustment which have

been proposed to fix the overall type I error are equally acceptable to the

statistical community, which leads to an embarrassing problem of deciding

which to use — embarrassing because the various methods give different

answers. A drug company does not want to have to say to the regulatory

agencies (or to a court, in the event of litigation), “our drug is acceptable

according to statistical method 1 but not according to method 2, and we

have no way of choosing between these methods”.

Multiplicity

Recall the general problem of multiplicity in Frequentist methods which I

described in chapter 7. The best that can be said for Frequentist methods

is that they have the property that if the same analysis is repeated on a long

sequence of experiments which are identical except for random variation

they will make errors in a known proportion of cases, conditional on the

null hypothesis. Even this is not true in practice, because measurement

error is generally not included in the model; but let us leave that issue to

one side. Still, Frequentist methods fail to have this attractive property in

typical applications because practically no experiment calculates a single

Frequentist statistic. When more than one is calculated, each one has a

chance of being in error, so the statistical analyst faces a dilemma, which

I present here in terms of P-values for simplicity but which could be

described in terms of any Frequentist measure including the coverage of

confidence intervals. The Frequentist’s dilemma is that he must either:
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• give each P-value an error rate of 5%, in which case the analysis as

a whole will have an error rate greater than 5% and, in many cases,

approaching 100%;

or

• adjust each P-value so that the overall error rate of the analysis re-

mains 5%.

Since the whole point of Frequentist theory is to limit overall error rates,

a fully Frequentist theory must take the second fork of the dilemma and

adjust each P-value (Neyman 1937, Kendall & Stuart 1967, Stuart et al.

1999, Mayo 1996), even though this means that the error rate of each

interim analysis is changed in an arbitrary fashion to suit the context in

which the interim analysis happens to take place.

I noted in chapter 7 that the correction for multiplicity usually takes

the form of a Bonferroni correction: that is to say, the cut-off for attributing

statistical significance “at the 5% level” becomes (5% / n), where n is the

number of P-values being calculated. The Bonferroni method can also be

applied to the endpoints of confidence limits. However, the Bonferroni

correction does not give the right answer (an overall error rate of 5%) in

sequential trials.133 Once the Bonferroni correction is abandoned, we get

a problem even worse than ad hocness: it becomes impossible to find a

133. The Bonferroni correction only works, in the Frequentist’s sense of “works”, when the
P-values being combined are independent (in the statistical sense of “independent” explained
in chapter 13); but the repeated measurements on the same subjects which are made in
sequential trials are not independent. This is for two reasons. A single subject’s health at
one point of time is, of course, not independent of the same subject’s health at a previous
point of time; and even if it were, the measurements which are subjected to analysis in a
Frequentist analysis are cumulative, so that the analysis at time t includes all the data from
times < t , and necessarily so or else important information would be being discarded in the
later analyses. Hence the measurements cannot be independent of each other, not merely as
a point of biology but also as a point of mathematics. So the Bonferroni correction does not
apply. Consequently, a Frequentist analysis of clinical trials is saddled with the problem of
finding a mathematically valid correction for multiplicity (i.e., one which gives an overall error
rate of 5%), in addition to the epistemological problems raised by any such method.
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method of correcting P-values and confidence intervals which leaves them

compatible with each other (in the obvious sense that the P-values are the

endpoints of confidence intervals).

Are these problems bad enough to warrant abandoning Frequentist

methods for designing clinical trials?

The two groups of commentators on this question — the yessers and

the noers — have, since the 1950s, drawn up battle lines along the great

divide between proponents of the likelihood principle and Frequentists. As

we will see, the yessers have often been drawn into prodigious complexities

in trying to solve the sequential problem, while the noers have usually been

content to rest on their laurels, have not, until (Grossman et al. 1994),

published in detail the statistical procedures which they recommend, and

until very recently have been roundly ignored by practising statisticians.

I will give my own answer to this question gradually. I have al-

ready presented many problems with Frequentist methods (in chapter 7)

— enough to answer the question peremptorily — but rather than assume

that my arguments there have been successful in showing that we should

not use Frequentist methods, I propose to approach the issue from a dif-

ferent angle in this case study. I will arrive in essentially the same place

as I did in chapter 7, but with more of an emphasis on the problem of

multiplicity which I briefly introduced there and the ad hocness which that

particular problem introduces, and less of an emphasis on the fundamental

epistemological incoherence of Frequentism. In order to give this different

angle a chance to shed fresh light on the problem, I will put the objections

of chapter 7 to one side for the time being, returning to them only at the

end of the chapter when I sum up the whole thesis.
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In this case study (unlike the rest of the thesis), all of the supporters

of the likelihood principle of any importance have been Bayesians. That

Bayesianism and Frequentism would come into particular conflict over

sequential clinical trials has been noted often in the literature. For example:

At the heart of this debate are two conflicting fundamental prin-
ciples for assessing the meaning of experimental data. These are
the Likelihood Principle and the [Frequentist] Repeated Sam-
pling Principle [that only the properties of a procedure on re-
peated application are important]. If we accept the Likelihood
Principle, it follows that all inferences should be based on the
experiment that was was actually performed, the data that was
actually obtained, and the relative probabilities of obtaining the
observed results under various plausible alternative hypotheses.
If we accept the Repeated Sampling Principle, it follows . . . that
strength of evidence should be quantified by sequentially ad-
justed P values or other probabilities. In most of statistics, these
two principles lead to remarkably similar inferences. However,
in sequential clinical trials, they come into sharp contradiction.

(Dupont 1984, p. 277)

Conditioning and the likelihood principle

The only system compatible with the likelihood principle which has been

applied to sequential analysis is the Bayesian system. Although I do not

wish to defend any form of Bayesianism in all its details, I hope to show

in this case study that Bayesianism fares better than Frequentism. It will

then follow that the best of the methods compatible with the likelihood

principle, whether that be Bayesianism or not, will fare at least as well as

Bayesianism and hence better than Frequentism.
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The Bayesian system, of course, has the drawback of demanding that

every problem is analysed using an expression of belief which is ulterior

(“prior”) to the experiment. Bayesians who have worked on sequential

analysis have developed an interesting approach to this problem. It is well

known to clinical epidemiologists that although the likelihood principle

allows one to calculate likelihood ratios for diagnostic tests, it is impossible

to give the rate at which a test for a disease gives false positive results

without specifying the prevalence of disease in the population to which it

will be applied. In a way which is mathematically exactly analogous, these

Bayesians claim that the false positive rate of clinical trials can be specified

by finding the prevalence of false positives in similar trials. This false

positive rate can then (they argue) be used to construct a reasonable prior

probability distribution for the trial’s main parameters.

Although such Bayesians clearly have epistemological problems of

their own, they easily avoid the ad hoc choice between many different

methods of adjusting type I errors which faces Frequentists. Bayesians

need not care about type I error rates. The only constraints on their pro-

cedures are the prior probability distribution and the probability calculus;

from these two ingredients, a Bayesian can directly calculate the probabili-

ties of hypotheses, as we saw in chapter 3, and Bayes’s Theorem guarantees

that there is only one way to do this.

I will give the mathematical details of this Bayesian approach later.

First, here is a concise history of Frequentist approaches to the problem.
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A BRIEF HISTORY OF GROUP SEQUENTIAL PROCEDURES

The first important publication on sequential analysis was (Wald 1947).

This book established general Frequentist methods for fully sequential

analysis. Bross was the first to apply sequential methods to medical re-

search, in his (Bross 1952). The work of Wald, Bross and others was

followed by (Armitage 1960), which adapted Wald’s methods to clinical

trials. These books established the importance of adjusting P-values in

Frequentist sequential analysis.

The first statement of the likelihood principle (and one which I quoted

at length in chapter 8) was by Barnard in (1947, p. 659). An advocate of

Barnard’s new likelihood principle, Anscombe, reviewed Wald’s book in

1954 and Armitage’s in 1963. In the latter review, he asserts that

‘Sequential analysis’ is a hoax. The correct statistical analysis
of the observations consists primarily of quoting the likelihood
function. So long as all observationsmade are fairly reported, the
sequential stopping rule that may or may not have been followed
is irrelevant.

(Anscombe 1963, p. 381)

One direct result of Anscombe’s 1963 article was that a group of prominent

clinical trials statisticians at the U.S. National Institutes of Health held a

seminar to discuss the role of hypothesis testing from a practical point

of view. This seminar lead to the first published suggestion of group

sequential trials, by Shaw (Cutler et al. 1966).

In 1969, Armitage, McPherson andRowe (1969) first discussed group

sequential methods in detail. They introduce there what was later to

become known as the Pocock stopping rule based on uniformly spaced
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analyses and a uniformly distributed correction for multiplicity (the closest

thing possible to a Bonferroni correction). They give approximate values

for the necessary Frequentist adjustment for 5, 10, 15, 20, 50, 100 and 200

analyses. They also discuss the appropriateness of repeated Frequentist

significance testing, and note the lack of error rates for Bayesian group

sequential methods:

The exchanges of opinion on these matters have been remark-
able for the lack of quantitative information about the optimal
stopping effect. It has not, for example, been possible to answer
questions such as the following.
(a) What is the probability of obtaining a result “significant” at

a certain nominal level, within the first 50 tests?
(b) Does the enhancement of the probability of obtaining a

significant result reach a noticeably high level only after a
very large number of tests?

(c) What is the effect of repeated tests when the null hypothesis
is not true?

(Armitage et al. 1969)

Such unanswered questions dominated the debate for three decades. These

error rates were soon quantified for repeated significance tests, but not for

Bayesian methods. They were quantified for Bayesian tests for the first

time (albeit only for a simple family of priors, and considering only up to

10 tests) in (Grossman et al. 1994).
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Subsequently, there was an extraordinary proliferation of mutually

incompatible Frequentist group sequential methods.134

134. Let me present a few prominent examples from the literally dozens of methods. A
reader who is willing to take my word for the fact that the various Frequentist methods differ
substantially from each other can skip this footnote.

– Haybittle (1971) suggests an extremely simple group sequential procedure: stop the
trial if the difference between the treatment and control groups at an interim analysis
exceeds three standard deviations (on some parameter of interest).

– Elfring and Schultz (1973) present a very advanced group sequential plan for binary
outcomes. It incorporates features which were not rediscovered until much later: for
example, it gives a stopping rule for incorrectly failing to reject the null hypothesis as
well as one for incorrectly rejecting it, an idea reinvented by Emerson and Fleming 16
years later (1989). Elfring and Schultz also allow for interim analyses to be conducted
on variably-sized groups of trial subjects (not permitted by any other method until
1983). But as far as I know, Elfring and Schultz’s method has never been used in a large
phase III trial. A major drawback was that their stopping rule is not given explicitly
but has to be separately computed by simulation for each trial.

– Peto and nine colleagues (1976) propose considering a P-value significant at interim
analyses only if it reaches some arbitrary very extreme value, followed by an unadjusted
P-value test in the final analysis.

– Pocock (1978) suggests a simple P-value test with a significance level of 1% for every
analysis (including the final analysis) in a trial with up to 11 analyses. This gives an
overall significance level of less than 5%. (This is not the same as the standard “Pocock”
test described above and tabulated below.)

– O’Brien and Fleming (1979) suggest a stopping rule which becomes less conservative
(more likely to reject the null hypothesis) as time passes. Formally, an O’Brien and
Fleming trial stops iff χ2(n) > k / n, where k is a constant. This increases the
power of the study (decreases the type II error), but it also increases the discrepancy
between unadjusted and adjusted significance levels. This is currently the most popular
stopping rule in large trials, along with the original Pocock method (the one described
in (Armitage et al. 1969), not the one described in (Pocock 1978)).

– DeMets and Ware (1980) suggest a one-sided design, which means that one chosen
arm of the trial (usually the placebo arm) cannot be found to be better than the other.
Such a design has higher power (lower type II error) than the more usual two-sided
design. The issue of whether we should use one-sided or two-sided designs can
be generalised to the issue of whether the null hypothesis should be no treatment
difference, a small treatment difference, or a small or negative treatment difference. All
of these possibilities have associated Frequentist group sequential methods (O’Brien
& Fleming 1979, Pocock 1983, Freedman et al. 1983). It has even been suggested
that we should test for one chosen arm being better than the other in interim analyses
but then only test for the opposite effect in the final analysis (Chi et al. 1986). The
rationale seems to be that one might want to stop the trial as soon as possible if the
new treatment is worse than the standard treatment or placebo, but continue the trial
if the new treatment is better, in order to look at its safety. (At least, this is the way
the argument is presented in English. The algebra in (Chi et al. 1986) reads the other
way around— that one only stops the trial early if the new treatment is better than the
standard treatment — but I presume this is a typographical error.) This suggestion
requires yet another Frequentist group sequential method. Similar choices must be
made in a Bayesian analysis, but for a Bayesian they need not be made once and for
all; different approaches can be tried, without worrying about the effect of such extra
analyses on the type I error.

– Rubinstein and Gail (1982) suggest that data which accrue after the trial has been
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A problem which has been faced by all these Frequentist attempts at

a stopping rule is that the sample space at the ith interim analysis is not

one-dimensional: it is the space of vectors consisting of the main response

variable evaluated at each interim analysis to date. (I gave an example

of such a vector in chapter 7.) The necessity of averaging over more

extreme data which could have occurred (see chapter 4) means that this

i-dimensional space must have an ordering imposed on it. Themost radical

attempt to solve this problem within a Frequentist framework would be

to simplify the sample space by taking it to consist of the main response

variable at the end of the trial plus the time at which the trial was stopped.

But even with such an extreme simplification, there seems to be no natural

ordering for this pair of numbers, and nor will any ordering give confidence

intervals which are always consistent with P-values from the same trial.

This consideration is what makes the problem of multiplicity even worse

in sequential analysis than it is in other domains of Frequentist inference.

formally stopped (as some data almost always do, because of delays in postage and so
on) should be included in the analysis. Such amove invalidates all the above Frequentist
methods, which are not specifically designed to take such data into account. (It makes
no difference to a method compatible with the likelihood principle.)

– Falissard and Lellouch (1991) suggest stopping a trial early only if a series of r interim
analyses all give unadjusted P-values under 5%, where r is an arbitrary number (typi-
cally set to 2 or 3). This rule has mathematical advantages: in particular, it avoids the
possibility of the adjusted P-values becoming more and more significant even while
the unadjusted P-values become less and less significant, a problem which affects all
other Frequentist methods. However, Falissard and Lellouch’s plan has severe practical
disadvantages. Under their rule, a scientist who is planning seven analyses would be
forbidden to stop the trial at the first or second analysis, no matter what the sample size
was and no matter how many trial subjects had been killed. This nicely illustrates the
desperate measures which some statisticians have felt forced to advocate in struggling
with the problems of Frequentist sequential analysis.

– Koepcke (1989) recommends half of an O’Brien and Fleming stopping rule combined
with half of a Pocock stopping rule. There is nothing particularly interesting about
this suggestion except that it illustrates the increasingly obviously ad hoc nature of the
Frequentist stopping rule enterprise.

This list includes only about a tenth of the Frequentist group sequential methods which have
been advocated to date.
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To solve this problemwithout abandoningFrequentism, onemust find

some natural way of reducing the number of dimensions of the ordering

of the sample space. Jennison and Turnbull (1984) do this by stipulating

(without justification) that the confidence intervals are to be symmetrical

and centred on the unadjusted point estimate at each interim analysis.

However, it is clear that this point estimate will be biased by the stopping

rule, and Hughes and Pocock (1988) show this to be a severe problem

in particular, realistic cases. Moreover, because Jennison and Turnbull’s

point estimates are naive (unadjusted), the only way to secure control over

the confidence interval error rates is to force a large increase in the width

of the intervals, leading to some very counterintuitive results. The width

of the intervals is of more concern than the bias to those of us who do not

consider bias to be a problem (see chapter 11). Primarily for these reasons,

when Jennison and Turnbull presented their work to the Royal Statistical

Society in 1989 they attracted a lot of criticism.

The good news is that an ordering of the sample space is only neces-

sary so long as we insist on fixing the coverage probability averaged over

the sample space. Any procedure which follows the likelihood principle

avoids this problem entirely, since unobserved points in the sample space

are no longer relevant.

Thus, there are four options:

(1) Specify a complete ordering of the sample space.

(2) Use very wide confidence intervals centred on estimates which may

be wildly biased.

(3) Reduce the number of dimensions of the problem in some other way

— but a plausible way has not been found.
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(4) Refuse to average over the sample space, in accordance with the like-

lihood principle.

I now turn to what happens if we take option 4.

A SUBJECTIVE BAYESIAN SOLUTION

In the 1950s and 1960s, Anscombe suggested separating the stopping

rule from the analysis, on the grounds that the stopping rule ought to be

sequential but the analysis oughtn’t (Anscombe 1954, Anscombe 1963).

This idea is fundamentally incompatible with Frequentist reasoning, since

the overall type I error of a trial analysed in this way could not be fixed at

any particular value. However, it was revived in 1983 by Dupont, with the

following motivation:

it is hard to see why decisions that would have been made in
response to outcomes that did not occur should have any bearing
on the strength of evidence that can be attributed to the results
that were actually observed.

(Dupont 1983, p. 3)

This is of course a statement of the likelihood principle (at least, on a loose

interpretation of “decisions” it is).135

The first suggestions of a fully Bayesian solution to this problem were

published, by Anscombe (1954) and Cornfield (1966, 1976), substantially

before it became obvious that Frequentist solutions were unacceptably ad

hoc. Neither Anscombe nor Cornfield described the Bayesian solution in

135. There is an unsatisfying inconsistency in Dupont’s approach if the P-values in both
the sequential interim analyses and the non-sequential final analysis are given the same
interpretation; so Dupont suggests that the non-sequential P-value should be read as an
approximation to the likelihood ratio (whereas Anscombe preferred to forswear P-values
altogether). This problem is not relevant to my own proposed Bayesian analysis, so we need
not consider it further.
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any detail, probably because the details of a solution are so obvious to a

Bayesian, and so mathematically simple, that they felt there was no need to

do so. But of course a statistical method with no published details was not

going to be widely adopted, so in 1985 Berry published for the first time the

mechanics of an explicit Bayesian method for analysing group sequential

trials (Berry 1985, Berry 1987, Berger & Berry 1988, Berry 1991). In such

a system, all of the problems which plague sequential methods disappear:

at any stage in a trial, point and interval estimation are easy to do, need no

adjustment, and are automatically compatible with each other and easy to

interpret.

The simplest Bayesian method for analysing a group sequential trial

is as follows. 2n subjects enter a trial with two treatment arms (one of

which may be a placebo). The primary outcome is represented by a real-

valued variable, and the unknown true difference in outcome between the

two treatments is represented by δ.136

Suppose further, without much loss of generality (Pocock 1977), that

the differences in paired samples from the two arms of the trial are Nor-

mally (Gaussianly) distributed with variance σ2. Our task, given n and σ,

is to estimate δ.

Let Yt be the mean treatment difference in block t (the block of

subjects recruited between analysis t and analysis t − 1). Then the Yt are

independently distributed as N (δ,σ2T / n).

A prior probability distribution p(θ) is ascertained. For simplicity,

we can consider this distribution to be N (µ0,σ20). Nothing much rests

136. This can be given a population interpretation, as the difference in outcome which would
be seen in the population fromwhich the samples were drawn if all members of the population
were given the treatment, or it can be given a subjective interpretation. Which interpretation
it should be given is an interesting issue, but the choice does not affect anything I have to say.
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on the shape of the distribution (provided that it is mathematically well

behaved); only its low-order moments (mean, standard deviation and skew)

have much effect on the results, and it is reasonable in most trials to set the

skew to zero. Moreover, since we are considering a clinical trial which aims

to convince regulatory authorities to overcome a natural conservatism, it

makes sense for µ0, the mode (most probable value) of the prior probability

function, to be set at 0 (no treatment difference), so that the prior becomes

N (0,σ20). Strictly speaking this is sullying the Subjective Bayesian method

with an element which is supposedly set according to the belief state of

a doxastic agent but actually set with its effect in influencing another

doxastic agent in mind. The reason that the epistemic sleight-of-hand

involved in setting µ0 to zero does not bother me is that it is almost always

the case that the two treatments are believed by all the doxastic agents

involved to be approximately equivalent. This is because an agent who

thought otherwise would find the trial unethical. (See the discussion of

equipoise above.) If this argument fails in a particular case then a non-zero

value of µ0 can be worked into the mathematics below without difficulty.

At each analysis, we construct the statistic

St =
t∑
i=1

Yi
t + k

where k ≡ 1
n

√
σ0
σ .

St is our point estimate of δ. It is the mean of the Bayesian posterior

distributionN (δ,σ2 / nt ), where 2nt is the number of subjects seen to date.

(This follows from the definition of Bayesianism which I gave in chapter

3.)
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We can also construct Bayesian credible intervals for δ. For example,

a 95% credible interval is

CI95%(St ) = St ± 1. 96 σ
√
t + k
t
.

Again, this follows from the definitions in chapter 3.

The most natural Bayesian stopping rule is to use a two-sided test

which stops the trial if CI95%(St ) excludes 0; in other words, if

∣∣∣∣∣
t∑
i=1

Yi

∣∣∣∣∣ > 1. 96 σ
√
t + k
t
.

Since this is a Bayesian method and therefore one which observes the

likelihood principle, no adjustment is made for the number of analyses.

This simple Bayesian method can easily be generalised to more com-

plicated trials such as those with more than two arms, if necessary; but

many complications can be ignored.137

This Subjective Bayesian solution is of course compatible with the

likelihood principle, and hence with the likelihood principle. It does not

suffer from any of the ad hocness of the Frequentist solutions, but it has

not been acceptable to regulatory bodies for two reasons:

1. its subjective nature is fundamentally unacceptable to public regula-

tors (whether or not it ought to be);

2. its Frequentist error rates have not been known until recently.

137. For example, the simple procedure gives approximately the same results as the obvious
generalisations even when the group sizes are unequal, up to about a 20% difference in size,
and even when adjustments are made for the differing health states of individuals (“prognostic
factors”) (Jennison & Turnbull 1989).

439



A MORE OBJECTIVE SOLUTION

A breakthrough in the acceptability of Bayesian methods came in 1988,

when Hughes and Pocock, luminaries of the Frequentist school which I

considered in the historical section above, embraced a Bayesian method.

Hughes and Pocock recommended using a fixed, relatively objective prior

distribution (Hughes & Pocock 1988, Pocock & Hughes 1989, Pocock &

Hughes 1990). I will not consider their method in detail, because it suffers

from a major flaw: although it uses a Bayesian to calculate its results, it

uses Frequentist considerations to choose the stopping rule. It is thus

open to objections from both Frequentists and Bayesians.

Until 1989, despite previous interest in Bayesian methods of param-

eter estimation, there was nothing to show whether a Bayesian group

sequential method could have reasonable error probabilities. Freedman

and Spiegelhalter (1989) took the first step towards finding this out by

showing that for certain reasonable priors138 a Bayesian trial would have

a stopping rule very similar to those in common use — specifically, those

of Pocock and O’Brien and Fleming. My own work has made these results

more precise, as I describe below.

Only a couple of other non-subjective Bayesian solutions to the group

sequential problem have been proposed. Mehta and Cain (1984) and Gold-

man (1987) consider using a flat (improper) prior probability function; but

this gives an extremely radical stopping rule (one which stops the trial

extremely easily), and inherits the problems of improper priors which I

discussed in earlier chapters. Gharraf and Al-Nassar (1990) propose a

138. similar to those proposed by McPherson (1982) and Hughes and Pocock (1988)
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prior which distributes the probability on just two points in the hypothesis

space; they do not justify this choice.

The relatively objective procedure which I propose is similar, math-

ematically, to the Subjective Bayesian procedure discussed in the previous

section. The details are as follows.

Up to 2n subjects enter a trial with two treatment arms (one of

which may be a placebo) in up to T groups, with an analysis planned

after each group. (The number of subjects receiving each treatment is

then n / T per group.) As before, the true difference in primary outcome

between the two treatments is represented by δ. Again, let Yt be the mean

treatment difference in block t . Then the Yt are independently distributed

as N (δ,σ2T / n).

Unlike the Subjective Bayesian method, the objective method sets a

prior distribution in terms of a handicap which the data must overcome in

order to overturn the null hypothesis. This handicap is mathematically

equivalent to a set of f × n outcomes distributed according to the null

hypothesis, for some f yet to be determined. (f is no longer defined as
1
n

√
σ0
σ as it was in the Subjective Bayesian analysis.) This yields the prior

probability function of N (0,σ2 / f . n).

Now I play a dirty trick. I assert, without detailed justification, that
1
3 is a reasonable value of f . This value can be supported in three ways:

1. It is, approximately, the value given by clinicians asked what degree of

conservatism in favour of the null hypothesis is required in particular

trials (Freedman et al. 1983).
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2. It is, very approximately, the degree of conservatism in favour of the

null hypothesis required by regulatory authorities (in so far as we can

estimate such a thing).

3. It gives the objective likelihoodmethodwhich I am proposing here ex-

cellent Frequentist properties. Although the Frequentist properties

of a procedure are not important from the point of view of a rational

doxastic agent’s own belief revisions (or so I have argued), they are

important in gaining acceptance for a procedure in a predominantly

Frequentist world. Taking this issue seriously is part of my claim

that this case study is a realistic application of the likelihood principle.

I do not claim that any of these reasons for choosing f = 1
3 is conclusive,

only that they make the choice plausible and not entirely ad hoc.

At each analysis, we construct the statistic

St =
t∑
i=1

Yi
t + fT

.

St is our point estimate of δ. It is the mean of the Bayesian posterior

distributionN (δ,σ2 / nt ), where 2nt is the number of subjects seen to date.

Just as in the Subjective Bayesian case, we can construct Bayesian

credible intervals for δ. A 95% credible interval is

CI95%(St ) = St ± 1. 96 σ
√
t + fT
t

.

And just as before, the most natural Bayesian stopping rule is to use a

two-sided test which stops the trial if CI95%(St ) excludes 0; in other words,

if
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∣∣∣∣∣
t∑
i=1

Yi

∣∣∣∣∣ > 1. 96 σ
√
t + fT
t

.

If the amount of conservatism, f , is chosen so as to fix the Frequentist error

rates at some prespecified levels, the procedure contravenes the likelihood

principle, as is inevitable for any general Bayesian procedure constrained

in such a way (Sweeting 2001, p. 658). If, however, it is chosen so as to

include a reasonable amount of conservatism, it abides by the likelihood

principle but still has excellent Frequentist error rates, as my colleagues

and I show in (Grossman et al. 1994). We show there that the procedure

given above has a type I error between 2 12% and 5% for any number of

interim analyses between 0 and 10. We also show that its stopping rule is

similar numerically to the Frequentist rules most commonly used (those

of O’Brien and Fleming (1979) and Pocock (1997)). More surprisingly, we

show that our method has a lower expected sample size than the standard

Frequentist methods in many cases, as the following table shows.

power Grossman Armitage, O’Brien &
et al McP. & R. Fleming

50% 16.0 14.3 14.7

75% 23.4 23.4 22.8

90% 28.8 31.5 29.1

95% 31.3 36.2 32.5

Table 6
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Expected sample size for a trial with 4 interim analyses

To interpret this table, multiply each entry by σ2/δ2, where δ is an estimate

of the treatment difference between groups.139 “Armitage, McP. &R.”

stands for the method of (Armitage et al. 1969), which is essentially the

same as the method of Pocock (1997); “O’Brien & Fleming” stands for the

method of (O’Brien & Fleming 1979). The expected sample sizes of the

Armitage et al. and O’Brien and Fleming methods are taken from (Geller

& Pocock 1987).

It is possible to investigate the expected sample size of the newmethod

in more detail. Pocock (1982) has calculated the smallest sample size

attainable for a given power. There is no such thing as a sequential

procedure which is optimal (in this sense) at every power; but one might

hope for a procedure which is optimal for a reasonable power (not too high,

since very high powers require unfeasibly large study sizes, and not too

low, since Frequentist audiences find low-powered trials unconvincing).

Table 7, below, gives the cut-off to which P-values are compared in

various published procedures and compares them to the optimal levels for

various powers as given in (Pocock 1982). It shows that the new design

is remarkably close to optimal for a power of between 75% and 80%. For

my method, the values tabulated are not strictly P-values, since it is not

a Frequentist method; but they are sufficiently cognate to P-values that

a power calculation based on them is correct. For details see (Grossman

1993, Grossman et al. 1994).

139. The power of the procedures is defined in terms of such an estimate of treatment
difference. Recall that the power of a procedure is 1 − β , where β is the type II error
rate. This rate depends on the values of the unknown parameters, as explained in chapter 4.
Factualists do not care about the power of a test, of course, since the power is an average over
the sample space.
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No. of Armitage, O’Brien Grossman Optimal Optimal
analyses McP. & R. & et al for power for power

Analysis Fleming of 75% of 80%

2 1st 0.029 0.005 0.024 0.023 0.025
2 2nd 0.029 0.048 0.035 0.036 0.034

3 1st 0.022 0.0005 0.011 0.012 0.014
3 2nd 0.022 0.014 0.024 0.021 0.021
3 3rd 0.022 0.045 0.031 0.033 0.030

4 1st 0.018 0.0001 0.006 0.006 0.008
4 2nd 0.018 0.004 0.016 0.016 0.017
4 3rd 0.018 0.019 0.024 0.020 0.020
4 4th 0.018 0.043 0.029 0.032 0.029

5 1st 0.016 0.00001 0.003 0.003 0.004
5 2nd 0.016 0.0013 0.011 0.011 0.013
5 3rd 0.016 0.008 0.018 0.016 0.017
5 4th 0.016 0.023 0.023 0.019 0.018
5 5th 0.016 0.041 0.027 0.031 0.028

Table 7

P-value cut-offs compared to optimal cut-offs

The fact that the newmethod is approximately optimal in the sense of Table

7 means that it has approximately the lowest possible expected sample size

for a given power. Lowering expected sample sizes not only saves money,

it also protects trial subjects from receiving inferior treatments and gets

good drugs to market earlier. It saves lives.

Having said that, I have only shown that the new method saves lives,

on average, for a given power; and I know of no cogent reason for a non-

Frequentist to wish to assign or fix a given power. So the small expected
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sample size of this procedure ought to be convincing to Frequentists only.

Non-Frequentists, on the other hand, may not see it as optimal in any sense

but will see my method as better than any Frequentist method, provided

they accept the likelihood principle.

It is possible that likelihood-principle-based methods which are better

than my ownwill appear in the future. I do not claim that mymethod is the

best possible. I only claim that it is better in every way than any method

so far available in the literature, including any Frequentist method.

What has this case study shown about the likelihood principle? It

has shown that in a practical, important, non-toy case study the likelihood

principle, despite being incompatible with standard methods, is compatible

with what turns out to be the best method available so far. This speaks in

its favour.

2. GENERAL CONCLUSIONS

I will now sum up the most important conclusions from the thesis as a

whole.

I started this thesis by claiming that the study of the philosophy of

statistics (and hence, derivatively, the philosophy of most of the special

sciences) could be clarified tremendously by analyses of inference proce-

dures. I promised that I would delineate a clear, precise class of cases of

statistical inference in which Frequentist error rates are irrelevant. I have

done that. By analysing inference procedures, and especially by consider-

ing how inference procedures are evaluated, I have shown that — subject

to caveats which I trust I have made clearer than they have been made
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by other authors — the sample space of a merriment, and hence any Fre-

quentist error rate, is irrelevant to the conclusions which should be drawn

from that merriment about a hypothesis space. This, when the caveats are

spelled out, is what I have called the likelihood principle. Indeed, I have

shown that a merriment need not even have a sample space, and hence

that accidental observations can be analysed in the same way as designed

experiments.

I have shown, in a case study, that the likelihood principle can lead

us to statistical inference procedures which are better (in every sense,

even, sometimes, the Frequentist sense) than standard non-likelihood pro-

cedures, in realistic (non-toy) situations.

The rest of my conclusions are somewhat negative, because the direct

consequences of the likelihood principle is entirely negative. By ruling out

certain inference procedures, it tells us what not to do. As Basu puts this

point,

It is best to look upon [the likelihood principle] as a sort of code of
conduct that ought to guide us in our inferencemaking behaviour.
In this respect it is analogous to the unwritten medical code that
. . . disallows a Doctor to include a symmetric die or a table of
random numbers as a part of his diagnostic gadgets.

(Basu 1975, p. 22)140

140. Alan Häjek has pointed out to me that the current unwritten code of conduct for
statisticians, if not for doctors, does in fact allow them to do something very similar to
throwing a die as part of a diagnosis. The procedure in question is one which is used when
it is desired to get a certain significance level (say, 5%). If the P-value of a given experiment
is bound to be either strictly greater than or strictly less than 5%, as is sometimes the case,
a random number generator is used to determine which of the possible levels to use as the
level at which significance will be proclaimed. For example, if the possible outcomes include
P-values of 4% and 6% but not 5%, one might randomly, according to the toss of a coin, use
the 4% level as one’s cut-off for significance half of the time and use 6% the other half of the
time. However, I think it is uncontroversial among philosophers that such a procedure is
irrational. If not, I will have to assert that the likelihood principle is even less rational than
such a procedure.
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My main negative conclusions about the consequences of the work pre-

sented in this thesis come in the form of two consequences of the likelihood

principle, as follows:

1. The likelihood principle invalidates almost all Frequentist methods

of applied statistics at least mildly.

2. The likelihood principle grossly invalidates some Frequentist meth-

ods of applied statistics.

1. MILDLY INVALIDATING ALMOST ALL FREQUENTIST METHODS

With [the likelihood principle] as the guiding principle of data
analysis, it no longer makes any sense to investigate (at the
data analysis stage) the ‘bias’ and ‘standard error’ of point es-
timates, the probabilities of the ‘two kinds of error’ for a test,
the ‘confidence-coefficients’ associated with interval estimates,
or the ‘risk functions’ associated with rules of decision making.

(Basu 1975, p. 16)

Basu’s claim amounts to the assertion that the likelihood principle inval-

idates the criteria by which Frequentist procedures are selected. I will

argue here for an even stronger version of this claim: that the likelihood

principle alone is enough to invalidate those criteria, even though the fac-

tual principle is weaker than the likelihood principle. I will take each of the

criteria which Basu mentions in turn.

I have argued at length against caring about the bias of estimates in

chapter 11. Part of my argument was that bias is something which the like-

lihood principle cautions us to avoid in statistical inference, since it depends

on averages over the sample space. (This was a rather small part of my

argument, since it is obvious; I spent more time establishing independent
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reasons for being wary of bias.) As we saw, the bulk of authors continue

to care about bias not because they have any positive arguments in favour

of doing so but because it helps to reduce the otherwise unmanageable

number of Frequentist procedures available for most estimation problems.

But the likelihood principle helps with this problem too: by saying that

none of these methods is coherent, it leaves us with a smaller number of

non-Frequentist methods from which to choose.

The standard error of an estimator is a measure of how much that

estimator is expected to vary on repeated applications of a procedure. It

is clearly something else which we should not use in statistical inference,

according to the likelihood principle, because it requires averages over the

sample space (as does any measure which depends on taking averages over

imaginary repeated applications of a procedure).

The claim that “it no longer makes any sense to investigate . . . the

probabilities of the ‘two kinds of error’ for a test” formed themain argument

of the second part of chapter 7.

The claim that “it no longer makes any sense to investigate . . .

the ‘confidence-coefficients’ associated with interval estimates” formed the

main argument of the third part of chapter 7.

Basu’s final claim, that “it no longer makes any sense to investigate

. . . the ‘risk functions’ associated with rules of decision making”, is outside

the scope of this thesis, since a risk function is a type of utility function,

something which statistical inference per se may not have available to it.

However, it is, at least, compatible with my claims, since some forms of

decision theorywhich are compatiblewith the principle, including standard
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Bayesian decision theory, have no use for risk functions (Raiffa & Schlaifer

2000).

2. GROSSLY INVALIDATING SOME FREQUENTIST METHODS

The claim that the likelihood principle grossly invalidates some Frequentist

methods can be proved by example. I gave an example in chapter 7,

where we met a Frequentist 75% confidence interval which we could be

certain contained the true value of the parameter (the height of a bonobo

chimpanzee). I gave another, more detailed example in the sequential

trials case study above, where we saw that Frequentist methods with equal

plausibility are drastically at odds with each other. We saw that factualist

analyses avoid both the epistemic incoherence of the bonobo’s confidence

interval and the ad hockery of the case study. Hence, if the likelihood

principle is right, some of Frequentist applied statistics is grossly wrong.

FINAL CONCLUSIONS

I have argued that we should accept the likelihood principle, but I have

come to no firm conclusions about how it should be applied (as opposed to

how it should not be applied).

As we have seen, the only likelihood method which has yet been

worked out in detail and shown to be applicable to a wide variety of prob-

lems is Bayesianism. Bayesianism appears to most people to be necessarily

more subjective than the standard methods, and consequently the stan-

dard methods are in no danger of disappearing quickly. But there are some

contexts in which we don’t have to wait for complete agreement on the
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subjectivity of Bayesian methods. Areas in which likelihood methods could

replace non-likelihood methods with no loss of objectivity include:

• problems inwhich the priors are so important and so obviously subjec-

tive that they can and should be provided separately by each decision

participant, leaving the statistician free to publish only the likelihood

function;

• problems in which inferences can be drawn from raw likelihood func-

tions or raw likelihood ratios;

• problems in which the priors correspond to empirically known fre-

quencies — these are fairly common, covering, for example, almost

all of clinical epidemiology, as I showed in chapter 3.

This thesis has argued that the likelihood principle should be applied

in all areas of statistical inference. We now see that it can be applied

uncontentiously in at least some areas. The exact extent of these areas is

a matter for further research.
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Insert

possible symptoms
vomiting diarrhoea social other symptoms

withdrawal & combinations
(observed (not observed (not observed (not observed
in this case) in this case) in this case) in this case)

hypotheses

dehydration 0. 03 0. 2 0. 5 0. 27

PTSD 0. 001 0. 01 0. 95 0. 029

anything else 0. 001 0. 001 0. 001 0. 997

Table 1
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