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Chapter 1

Introduction

1.1 Measure Theory and Lebesgue Measure

Measure theory is a �eld of mathematics dedicated to the properties of mea-
sures : functions that assign a nonnegative number to a set. The main mo-
tivation in measure theory is to mathematically describe the notion of the
n-dimensional volume of a set in Rn: in particular, to determine the length,
area, or volume of a set in R1, R2, or R3 respectively. For many sets with nice
properties, this theory was developed by mathematicians several millennia
ago, where civilisations such as the Greeks were able to determine the area
of regular shapes and solids, such as polygons, polyhedra, and balls. But for
less regular sets, the problem of measure remained.

The need for a well-de�ned measure on Rn became a major issue in the
19th century through the development of integration, and, in particular,
Riemann integration. The conditions for a function to be Riemann integrable
is related to the size of the set of points at which the function is discontinuous.
However, it was unknown how to de�ne such a measure to ensure that if the
size of the set was su�ciently small, then the function would be Riemann
integrable.

This was resolved with the advent of Lebesgue measure, introduced by
the French mathematician in 1902. Not only did his notion of a measure ac-
curately show when a function is Riemann integrable, he was able to weaken
the conditions of integrability by creating the more generalised notion of the
Lebesgue integral. Moreover, his de�nition of a measure extended past R1,
R2, and R3 to any dimension, while still retaining consistency by agreeing
with the natural notions of length, area, and volume.

De�nition 1.1 (Lebesgue's De�nition of Measure). Let E be a subset
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of Rn. The Lebesgue (outer) measure of E, denoted �(E), is de�ned to be

�(E) = inf

(
1X
i=1

�(Ri) : E �
1[
i=1

Ri

)
;

where each Ri = [ai1; b
i

1]�� � �� [ai
n
; bi

n
] is a closed (possibly empty) rectangle,

and the measure of each Ri is given by �(Ri) = (bi1 � ai1)� � � � � (bi
n
� ai

n
).

So Lebesgue measure involves approximating a set by covering it with
rectangles, and then adding together the volumes of the rectangles. This
de�nition of a measure was highly lauded by the mathematical community
at the time for elegantly unifying integration theory and measure theory.
Moreover, it appeared that Lebesgue measure was consistent with previous
theorems of mathematics in measure theory and accurately modelled the
notion of volume in the real world.

Lebesgue measure unlocked an area of mathematics that had previously
been plagued with inconsistencies. With Lebesgue's de�nition of a measure
on Rn, it was possible consider measures on more general spaces, leading to
the current generalised de�nition of a measure.

De�nition 1.2. A measure is a function on subsets M of a set X, where
M is a �-algebra and so is closed under complements and countable unions
and intersections, as well as containing ; and X itself. The measure � :
M ! [0;1] satis�es �(;) = 0, and that if E1; E2; : : : is a countable family
of disjoint sets in M, then � (

S
1

i=1
Ei) =

P
1

i=1
�(Ei).

Thus a measure is a function that assigns each set in M a nonnegative
real number, and satis�es that the measure of the union of disjoint sets is
equal to the sum of the measure of each set. The latter property is known
as countable additivity.

1.2 Non-Measurable Sets and the Banach-Tarski

Paradox

However, it was discovered through an example of Giuseppe Vitali in 1905
that not every set had a well-de�ned measure. For one would expect every
set to be as \big on the inside as the outside", which means that they would
satisfy Carath�eodory's criterion for measurability.

De�nition 1.3 (Carath�eodory's Criterion). A set E � Rn is measurable
if for all sets A � Rn,

�(A) = �(A \ E) + �(A n E):
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Vitali gave an example of a set in Rn that did not satisfy this criterion,
and so was non-measurable. With this, many aspects of Lebesgue's theory
of measure would fail, as this theory relied on sets being measurable. In
particular, Lebesgue measure is not countably additive on all of Rn. This
was seen most strongly through the Banach-Tarski paradox, which built upon
the earlier paradox created by Felix Hausdor�.

Theorem 1.4 (The Hausdor� Paradox). One can decompose S2, the unit
sphere in R3, into four pieces A1, A2, A3, and C, such that C is countable
(and hence has measure zero), and such that A1, A2, A3, and A2 [ A3 are
each congruent to each other.

As Lebesgue measure has the property that congruent sets have the same
volume, this suggests that there are subsets of S2 that are simultaneously one-
third and one-half of the sphere; hence the paradox. The contradiction with
intuition of Lebesgue non-measurable sets is shown most strongly through
the paradox of Stefan Banach and Alfred Tarski, which uses the Hausdor�
paradox to create a paradoxical decomposition of the unit ball in R3.

Theorem 1.5 (The Banach-Tarski Paradox). One can decompose B3,
the unit ball in R3, into �ve disjoint pieces, and by rotating and translating
them, these �ve pieces can be recombined in order to create two balls of the
same size as the original ball.

This highly contradictory result became a very contentious issue in mathe-
matics following its publication in 1924. For as Lebesgue measure supposedly
models volume in real life accurately, it seems to suggest that it is possible
to create new volume out of nothing. Of course, this is not the case: the �ve
pieces used in decomposing B3 are non-measurable.

1.3 The Problem of Measure

The Banach-Tarski paradox is a proof that one cannot use Lebesgue mea-
sure to model volume on every subset of Rn, as some subsets may be non-
measurable. This answered an earlier question of Lebesgue's, which is the
main question of this paper. We present this question in a slightly more
modern formulation:

Main Question of the Paper (The Problem of Measure). Using the
standard axioms of set theory, does there exist a measure on all the subsets
of Rn that is countably additive, isometry invariant, and gives the unit cube
volume 1? If so, is this measure unique?
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The motivation for this question is, of course, the notion of length, area,
and volume in real life. When it was proved that Lebesgue measure is the
unique measure satisfying these properties restricted to (Lebesgue) measur-
able sets, it was expected that Lebesgue measure would be the solution to
this problem. Thus it came as great surprise to the mathematical community
that no such measure exists, as Vitali's construction of a non-measurable set
and the Hausdor� and Banach-Tarski paradoxes show. The result of this is
the disturbing disparity between real life and mathematics; using the stan-
dard techniques of mathematics, it is not possible to accurately model things
such as real-life volume.

The question that we examine in this paper is aimed at resolving this
disparity: we ask that if we weaken certain conditions of the problem of
measure, can we answer it in the positive? Our motivation behind this is
that by answering the problem of measure in the positive, we will be in a
sense resolving the Banach-Tarski paradox.

There are, of course, plenty of conditions to examine: in the original
formulation, we have demanded that we use the standard de�nitions of set
theory, that the measure we work with is countably additive, that the mea-
sure is invariant under isometries (that is, under rotations, translations, and
re
ections), and that the unit cube is given volume 1. In this paper, we look
at what are perhaps the three most common ways of resolving the problem
of measure:

(1) We consider non-additive measures � on Rn, such that there exist
E1; E2 � Rn with �(E1 [ E2) 6= �(E1) + �(E2). This allows us, for
example, to extend Lebesgue measure to every subset of Rn, including
previously non-measurable sets. In order to do so, however, we must
change the de�nition of a measure.

(2) We consider measures using di�erent axioms of set theory. The stan-
dard axioms of set theory in mathematics are the Zermelo-Fr�ankel ax-
ioms together with the Axiom of Choice, which we denote ZF+AC.
The construction of non-measurable sets, and in particular the Banach-
Tarski paradox, all rely on the Axiom of Choice, which leads to highly
pathological, seemingly unrealistic sets. By working in a system of
mathematics without this axiom, for example, it is consistent that the
problem of measure is resolved in the positive.

(3) We consider restricting measures to certain \measurable" sets. This is
the standard method of resolving paradoxes in measure theory, and is
used in the modern formulation of the construction of Lebesgue mea-
sure. The �-algebraM for Lebesgue measure is the subsets of Rn that
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satisfy Caratheodory's criterion. With this de�nition of a measure, the
problem of measure is resolved in the positive.

We could also consider weakening other criteria, such as considering isom-
etry variant measures, measures that give the unit cube zero or in�nite vol-
ume, or measures on sets other than Rn. In general, however, by weakening
these criteria we lose our main application of the problem. Isometry vari-
ance implies that the volume of a set may change merely by rotating or
translating it, which is in direct contradiction of what we know of in real
life; the Cosmological Principle states that at large scales, the Universe is
isotropic and homogeneous, whereas an isometry variant notion of volume
would contradict this.

Similarly, it would seem ludicrous to consider a measure the unit cube as
having zero or in�nite volume, as if we nevertheless require that such a mea-
sure be countably additive and isometry invariant, then the vast majority of
non-trivial sets would also have either zero or in�nite volume. This approach
is taken somewhat in the de�nition of Hausdor� measure, a measure used to
�nd the (possibly non-integer) Hausdor� dimension of a set. But Hausdor�
measure is not very informative outside showing the dimension of a set; its
use is primarily in determining the dimension of fractal sets, not modelling
n-dimensional volume.

Finally, we could consider models of space other than Rn, the standard
model. Several academics from the realms of mathematics, physics, and
philosophy have suggested countable models of space as opposed to the un-
countable reals, such as countable models of the computable reals. These
have the possibility of resolving the problem of measure by rede�ning the
notion of space completely. However, examining such models and their pos-
sible resolution of the problem are beyond the scope of this paper.
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Chapter 2

Additivity

The unexpected result of the duplication of a set in the Banach-Tarski para-
dox occurs because we expect a measure to be additive: that the volume of
the union of sets is the same as the sum of the volume of each set. Additivity
is, in fact, part of the de�nition of measure. But if we remove this necessity,
then is it possible to resolve the problem of measure?

Question 1. Using the standard axioms of set theory, does there exist a
non-additive measure on all the subsets of Rn that is isometry invariant, and
gives the unit cube volume 1? If so, is this measure unique?

2.1 Finitely Additive Measures

Vitali's construction of a non-measurable set in R1 shows that the problem of
measure (with countable additivity) is answered in the negative. Similarly,
the Banach-Tarski paradox shows that even with �nite additivity (as opposed
to countable additivity), the problem of measure is answered in the negative
for R3. In fact, the Banach-Tarski paradox implies this for Rn for all n � 3.

On the other hand, the Banach-Tarski paradox has nothing to say about
the possibility of a �nitely additive measure acting on all subsets of R1

or R2, as the paradox belongs in a higher dimension. Moreover, the non-
measurability of the Vitali set requires that Lebesgue measure be countably
additive. So is it possible to extend Lebesgue measure on R1 and R2 such
that the extended measure is only �nitely additive?

It turns out that this is, in fact, the case: there does exist a �nitely
additive extension of the Lebesgue measure onto all subsets of R1 and R2

such that the measure is isometry invariant. Thus this slight weakening of
the problem of measure results in a positive solution. It must be noted,
however, that the standard proof of this result requires the use of the Axiom
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of Choice; it is a theorem of ZF+AC. In weaker forms of Zermelo-Fr�ankel set
theory, this result cannot be proved.

2.2 Non-Additive Measures

While the resolution of the problem of �nitely additive measures in R1 and
R2 is reassuring, we know due to the Banach-Tarski paradox that no such
resolution exists in R3. This is, of course, the dimension in which we are
most interested, being our standard model for space. So we naturally wonder
whether we can resolve the problem of measure using non-additive measures.

The standard method in this approach is to consider outer measures.

De�nition 2.1. An outer measure is a function on all subsets of a set X.
The outer measure �� : P(X) ! [0;1] satis�es ��(;) = 0, that if E1 � E2

then ��(E1) � ��(E2), and that if E1; E2; : : : is a countable family of sets in
M then � (

S
1

i=1
Ei) �

P
1

i=1
�(Ei).

The last property in the de�nition above is known as countable subaddi-
tivity. An obvious example of an outer measure is our original de�nition of
Lebesgue measure: we can apply this to every subset of Rn, and all of the
conditions of the de�nition above are satis�ed. It is only when we specify
that Lebesgue measure must be countably additive, as opposed to countably
subadditive, that we must restrict the measure to the �-algebra of (Lebesgue)
measurable sets.

In fact, we can consider forms of non-additive measures even stronger
than outer measures; we can, for example, consider metric outer measures.

De�nition 2.2. A metric outer measure is an outer measure satisfying
��(A[B) = ��(A)+��(B) for all A;B with inffjx�yj : x 2 A; y 2 Bg > 0.

So a metric outer measure is additive on sets of positive distance apart.
Again, Lebesgue outer measure is a metric outer measure on Rn. Of course,
it must be noted that Lebesgue outer measure is not the only outer measure
acting on Rn that is isometry invariant and normalises the unit cube. In 1884,
nearly twenty years before Lebesgue's theory of measure was introduced to
the world, Georg Cantor proposed an outer measure for Rn.

De�nition 2.3 (Cantor's Outer Measure). Let x 2 Rn, r > 0, and de�ne
�Br(x) = fy 2 Rn : jy�xj � rg. Then ifA is a bounded subset of Rn, we de�ne
Ar =

S
x2A

�Br(x) for all r > 0. We de�ne �(Ar) via Riemann integration,
and then de�ne the Cantor measure of A to be �(A) = limr!0 �(Ar).
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There are clearly several issues with this de�nition: for one, Cantor does
not clearly show how to calculate �(Ar), other than relate it to Riemann
integration. Unlike Lebesgue measure, it does not distinguish between a set
and its closure, and is therefore not additive. For example, we have that

1 = �([0; 1]) = �([0; 1] \Q) = �([0; 1] nQ):

This alone is enough to resolve the Banach-Tarski paradox in some sense:
the pieces used in the decomposition of the ball are each dense in the ball,
and so the measure of each piece would be equal to that of the ball itself.

It might seem strange in light of modern measure theory that Cantor
would suggest a non-additive measure. In the development of measure theory
in the late 19th century, however, additivity was not seen as important a
part of measure theory as it is today. Most early versions of measure were
not necessarily additive, until Emile Borel in 1898, who de�ned his measure
to be countably additive by restricting his measure only to certain \Borel
measurable sets", the smallest �-algebra containing the open sets (and hence
the smallest containing the closed sets).

This approach, of the necessity of additivity of a measure, was in fact
criticised at the time. Arthur Schoen
ies, compiling a two-volume report on
the theory of sets and trans�nite numbers at the turn of the 20th century,
was critical of Borel's de�nition of measure, suggesting that unlike other the-
ories of measure in use and development at the time, Borel's measure was of
little further use in applications of measure theory at the time. Furthermore,
Schoen
ies disagreed with Borel's de�nition of measure being countably ad-
ditive, as though it held for Borel's measure, other popular measures in use
at the time did not necessarily have this property. In e�ect, Schoen
ies ac-
cused Borel, by de�ning his own measure to be countably additive, of forcing
all measures to share this property, though many had not previously done
so; Schoen
ies saw no need for a measure to be additive.

It must be noted, however, that Schoen
ies glossed over some of the
many fallbacks of early de�nitions of a measure. The primary application
of measure theory in the 19th century was the development of Riemann
integration. But many measures failed to su�ciently bridge these two areas
of mathematics; for example, with some measures the area under the graph
of a function is not equal to the Riemann integral of the function. Similarly,
one of the main motivations was to determine the conditions for a function to
be Riemann integrable. Lebesgue discovered that the key condition involves
the set of discontinuities of a function having (Lebesgue) measure zero, but
many earlier forms of measure gave positive measures to sets of Lebesgue
measure zero, and gave measure zero to nowhere dense sets, despite these
possibly having positive Lebesgue measure.
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So why do we demand today that a measure be additive? It is primarily
due to the power of Lebesgue measure. Henri Lebesgue was motivated by
Borel's work on measures and continued that in the development of his own
version of measure theory. This measure greatly surpassed all other measures
before it in its generality and consistency, solving many of the problems in
integration theory, the main application of measure theory. On the other
hand, there remained a necessity to restrict Lebesgue measure to measurable
sets in order to have countable additivity.

However, we have seen that Lebesgue outer measure is, in fact, enough
in some sense to resolve the Banach-Tarski paradox, by merely noting that
as the pieces used in the decomposition of B3 are not of positive distance
apart from each other, their measures are not additive. Moreover, we can
restrict Lebesgue outer measure to the �-algebra of Lebesgue-measurable
sets in order to obtain a countably additive measure. Unfortunately, we
are begging the question here: we have retreated to de�ning sets as non-
measurable in order to regain the nice properties of a measure, as opposed
to the less useful properties of an outer measure. An outer measure, for
example, does not guarantee that

R
A[B

f =
R
A
f +
R
B
f for disjoint sets A;B

unless A and B are of positive distance apart, despite the intuitive nature
of this under Riemann integration. We must �rst consider whether A and
B are Lebesgue-measurable in order to prove that this statement holds, in
which case we might as well have worked with Lebesgue measure all along.

It must be noted, however, that the development of integration theory
over the last century has nearly all been based on the foundations of measure
theory created by Lebesgue, where countable additivity is seen as a necessity
and measures are only de�ned over �-algebras. Though this has led to a
seemingly rich theory of measure and integration, it is di�cult to say whether
similarly powerful theories could have been created had other de�nitions of
measure been prevalent in this time.

2.3 Verdict

Based on the current development of measure and integration theory, we
must conclude that using non-additive measures removes too much of these
areas, though perhaps because the development has had additive measures
in mind. Metric outer measures may be similar enough to measures and still
explain the paradoxical decompositions in the Banach-Tarski paradox, but
one must restrict this outer measure to certain sets in order to obtain the more
powerful and useful theorems of measure and integration theory. Moreover,
non-additive measures remove the real-life intuition of the conservation of
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volume despite decompositions and violate physical laws; in fact, if volume
of a solid body is not conserved under decompositions then clearly the law
of conservation of energy is contradicted. We cannot have the existence of
sets E1; E2 � Rn with �(E1 [ E2) 6= �(E1) + �(E2), because then we are
either losing mass or gaining mass unexpectedly, or equivalently losing or
gaining energy without justi�cation. Thus it seems infeasible to consider
non-additive measures as a satisfactory resolution of the problem of measure
in Rn, where n � 3, though as we noted earlier, the problem is solved in the
positive by a �nitely-additive extension of Lebesgue measure in R1 and R2.
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Chapter 3

Axioms

The problem of measure has no satisfactory resolution when it is assumed
that the standard axioms of set theory are used. This is not surprising;
mathematics relies on the consistency of using the same axioms over all �elds
of mathematics, and so it is logical to base the problem on the structure of set
theory used in all mathematics. But as the problem of measure is intrinsically
related to its application of modelling the notion of volume in space, is it
possible that the resolution of the problem might be in the consideration of a
di�erent structure of set theory to model mathematics, and hence to model
space?

Question 2. Under what axioms of set theory does there exist a measure
on all the subsets of Rn that is isometry invariant, and gives the unit cube
volume 1? Is this measure unique?

3.1 The Zermelo-Fr�ankel Axioms of Set The-

ory

Lebesgue's theory was developed at the turn of the 20th century. At the
same time, the foundations of mathematics itself were being rebuilt via the
development of axiomatic set theory. Mathematics had traditionally been
built upon the backbone of Euclidean geometry; geometry was considered
the foundation upon which all mathematics could be built. This was seen
to be fallacious in the development of non-Euclidean form of geometry by
Nikolai Lobachevsky in 1826. This new form of geometry, named hyperbolic
geometry, was proven to be consistent if and only if Euclidean geometry were
consistent.

Without one pure form of geometry to base the formulation of mathemat-
ics upon, many mathematicians began to consider using axiom systems as a
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basis for set theory, which, in conjunction with �rst-order logic, would form
a foundational system of mathematics. Early attempts of axiom systems by
Georg Cantor and Richard Dedekind showed the many pitfalls involved in
set theory; though these systems seemed to be a simple model for set theory,
paradoxes such as Russell's paradox indicated the lack of consistency of such
a system.

The current standard axiom system used as the foundation for nearly all
areas of modern mathematics was �rst proposed by Ernst Zermelo in 1908
and developed further by Abraham Fr�ankel in 1922. The current version of
Zermelo-Fr�ankel, or ZF, set theory consists of eight axioms on the existence,
construction, structure, and relation of sets. With these axioms, one fur-
ther axiom is usually added to create the standard set theoretic model in
mathematics: the Axiom of Choice.

Axiom 3.1 (The Axiom of Choice). Given any family F of nonempty
sets, there exists a function f that assigns to each member A of F an element
f(A) of A.

The Axiom of Choice seems quite unassuming; it merely states that if we
have a group of sets, then we can de�ne a function that chooses an element
of each set. In fact, the Axiom of Choice can be proved from the other eight
axioms if the family of sets is �nite. In some cases, if the family of sets
is countable, then again this statement is merely a theorem based on the
other eight axioms. But for arbitrary families of sets, the Axiom of Choice
is independent of the other eight axioms.

Though ZF+AC is the standard axiomatic model of set theory used in
modern mathematics, it is certainly not the only model. For the Zermelo-
Fr�ankel axioms of set theory have been criticised for being either too strong,
as many theorems of mathematics require much weaker axioms than those
presented, or too weak, as mathematical problems such as the Continuum
Hypothesis are unprovable in this axiomatic system. Moreover, G�odel's In-
completeness Theorems show that it is impossible to prove the consistency
of ZF+AC using ZF+AC itself.

The main criticism, however, of the Zermelo-Fr�ankel Axioms of set the-
ory are purely on the Axiom of Choice. Critics point out that it is non-
constructive: it states the existence of a choice function, but does not tell
how the choice is made, leading to the famous quotation:

The Axiom of Choice is necessary to select a set from an in�nite
number of socks, but not an in�nite number of shoes.

{ Bertrand Russell
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That is, it is possible to de�ne a function to select from an in�nite number of
pairs of shoes by choosing the left shoe, but without the Axiom of Choice, one
cannot assert that such a function exists for pairs of socks, because left and
right socks are identical. While Russell's statement puts the criticism of the
nonconstructivism in a humourous light, the fact that the Axiom of Choice
does not speci�cally describe how to create, for example, a non-measurable
set is a contentious issue.

3.2 The Axiom of Choice and the Banach-

Tarski Paradox

The Axiom of Choice is often targeted as the chief source of blame for the
Banach-Tarski paradox, because it is required in order to construct the pieces
used in the paradoxical decomposition of B3. In fact, all non-measurable
sets require the Axiom of Choice; the existence of a non-measurable set is a
theorem of ZF+AC. If the underlying foundations of mathematics are merely
ZF without the Axiom of Choice, then the existence of a non-measurable set
is unprovable, and so it is consistent to assume that every set is measurable.
In fact, the strongest set theoretic structure we can use that the existence
of a non-measurable set is unprovable is ZF+DC, where DC is the Axiom of
Dependent Choice.

Axiom 3.2 (The Axiom of Dependent Choice). Given a nonempty set
X and a binary relation R on X, there exists a sequence (xn) in X such that
xnRxn+1 for each n 2 N.

The Axiom of Dependent Choice implies the Axiom of Choice for count-
able families of sets, but the Axiom of Choice for arbitrary families of sets im-
plies, and is strictly stronger than, the Axiom of Dependent Choice. Though
it is weaker, the Axiom of Dependent Choice is su�cient for the development
of most areas of mathematics. We can therefore consider the set theoretic
system ZF+DC+GM, where GM is an axiom that states that there exists
a countably additive, isometry invariant measure on all subsets of Rn that
normalises the unit cube. It has been proved that this axiomatic structure
for mathematics is consistent if and only if ZF is consistent.

So non-measurable sets are non-constructive, as they require the Axiom of
Choice, and are seemingly irrelevant in physical world applications, as with-
out a constructive choice we cannot physically construct the non-measurable
sets in the Banach-Tarski paradox in order to duplicate a ball. Nevertheless,
the usage of AC leads to physical contradictions. Thus a natural resolution
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of this paradox would be to just not use the Axiom of Choice when consid-
ering the problem of measure, and instead work with the axiomatic system
ZF+DC+GM. With this, we have, in e�ect, solved the problem of measure:
under these axioms of set theory, Lebesgue measure satis�es the properties
of the problem, and is the unique measure with this property as it is the
unique measure over Lebesgue-measurable sets.

Despite this simple solution, this is generally not the method used to
resolve the problem of measure. The main issue with such a resolution is
that the Axiom of Choice is considered necessary for many other areas of
mathematics, such as in functional analysis, where it is used to prove the
Hahn-Banach theorem.

Theorem 3.3 (The Hahn-Banach Theorem). Let V be a vector space,
and p be a sublinear functional on V such that p : V ! C satis�es p(x+y) �
p(x) + p(y) and p(�x) = �p(x) for all x; y 2 V , � 2 [0;1). Then if f is a
linear functional on a subspace M of V satisfying f(x) � p(x) for all x 2M ,
there exists a linear functional F on the whole of V such that F (x) = f(x)
for all x 2M and F (x) � p(x) for all x 2 V .

This theorem, though proved using the Axiom of Choice, is strictly weaker
than the axiom itself; one cannot prove that AC holds using ZF+HB, where
HB is the axiom that the Hahn-Banach theorem holds for all vector spaces
V and sublinear functionals p. Moreover, assuming ZF+HB as a system of
axioms for set theory, it possible to construct a Lebesgue non-measurable
set. So if we wish to assume that every set is Lebesgue-measurable, then we
cannot prove the Hahn-Banach theorem.

Unfortunately, it proves too costly to do this. The Hahn-Banach the-
orem is one of the cornerstones of functional analysis, a key area of study
in modern mathematics. To remove this theorem would vastly diminish the
possible study in this area and reduce our mathematical knowledge greatly.
Moreover, it is not possible to have one system of axioms for one area of
mathematics and another system of axioms for another area of mathematics,
due to the possible overlap of these areas. In this case, we cannot suggest hav-
ing ZF+DC as our axiomatic system for measure theory and ZF+HB as our
axiomatic system for functional analysis, as the extremely close relationship
between measure theory and functional analysis would lead to inconsisten-
cies. The threat of such inconsistencies is too dangerous; we must have one
set theoretic system as the foundation for all areas of mathematics.

Nevertheless, many mathematicians see ZF+DC as a su�cient set theory
for all forms of constructive, applicable mathematics. However, these math-
ematicians are in the vast minority: let alone the Hahn-Banach theorem, the
Axiom of Choice is �rmly entrenched in modern mathematics, and removing
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it would hinder the development of mathematics. An example of its necessity
is its relation to Tychono�'s theorem, which states that the Cartesian prod-
uct of compact sets is itself compact. This statement, itself equivalent to the
Axiom of Choice, is one of the most important theorems of point-set topol-
ogy; as with the Hahn-Banach theorem, being unable to prove this result
would too severely restrict the development of this area of mathematics.

There are further problems with using ZF+DC as our axiom system of
set theory. In section 2.1 we discussed how the existence of a �nitely additive
solution to the problem of measure is solved in the positive for R1 and R2,
provided we were working in an axiom system of set theory having the Axiom
of Choice. Without this, Solovay was able to prove that ZF+DC+GM is con-
sistent if and only if ZF+DC+NM is consistent, where NM is an axiom that
states there is no additive measure on all subsets of Rn such that �(fxg) = 0
for all x 2 Rn. This is, in e�ect, a negation of the theorem of ZF+AC that
proves the existence of such a measure on R1 and R2. So if we use ZF+DC as
our underlying set theory, then the assumption that the problem of measure
is solved in the positive is a consistent theory if and only if the assumption
that the problem of measure is solved in the negative is also a consistent
theory. We are therefore relying on the possibility of a negative resolution of
the problem of measure in order to positively resolve it.

3.3 Verdict

On the whole, it must be concluded that one cannot a�ord to mathematically
resolve the Banach-Tarski paradox by removing the Axiom of Choice from our
underlying axioms of set theory. In order to retain complete mathematical
consistency, the Axiom of Choice is necessary in all areas of mathematics,
as theorems such as the Hahn-Banach theorem and Tychono�'s theorem are
too important to remove.

Though this argument is often put forward by mathematicians in favour
of retaining the Axiom of Choice, they neglect to note that these two exam-
ples only require the axiom for certain cases. In the Hahn-Banach theorem,
for example, the Axiom of Choice is only needed if the vector space in ques-
tion is non-separable. Similarly, Tychono�'s theorem only requires the full
strength of the axiom if the product in question is uncountable. For the other
cases, these theorems can be proved in ZF+DC. So removing the Axiom of
Choice does not remove all mathematical development based on these two
theorems. Nevertheless, the generality of these theorems would be lost, and
many further theorems rely on the full strength of these two examples.

On the other hand, removing the Axiom of Choice would, at least in
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measure theory, return the consistency of the properties of space and math-
ematical models thereof, and the Banach-Tarski paradox could be, in some
sense, satisfactorily resolved. It can be argued that most mathematical the-
orems applicable to modelling the physical world are provable in ZF+DC,
and this is certainly the conviction of a signi�cant number of mathemati-
cians. This conviction, however, must be coupled with the acknowledgement
that by limiting applicable mathematics to the axiom system of set theory
of ZF+DC, applied mathematics and pure mathematics are being �rmly di-
vided into two areas, where bridges between the disciplines must be made
with care and the understanding that the di�erence in foundations may lead
to inconsistent results.
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Chapter 4

Measurability

In the original formulation of the problem of measure, it is asked whether
such a measure exists when de�ned on all subsets of Rn. The existence
of non-measurable sets shows the danger of this assumption. By removing
these sets from consideration, we greatly simplify the theory of measures. So
it seems natural to ask whether the restriction of measure to certain subsets
of Rn results in a positive solution to the problem of measure.

Question 3. Using the standard axioms of set theory, on what subsets of Rn

does there exist a measure that is countably additive, isometry invariant, and
gives the unit cube volume 1? Is this measure unique?

4.1 Non-Measurable Sets

In many early theories of measure, it was necessary to determine whether a
set was \measurable" or not; informally, whether a set was \as large from
the inside as the outside". The standard way to do this was, for bounded
sets, to compare a set's measure to the measure of its complement. This
approach was taken by Lebesgue in his groundbreaking theory of measure.
Lebesgue was heavily in
uenced by the work of Borel, under whose measure
closed sets were measurable. In fact, Borel showed that under his measure,
the �-algebra of Borel sets (the smallest �-algebra containing the open sets)
consists purely of measurable sets.

In most early versions of measure, the need to specify which sets were
measurable was quite necessary, as many simple sets did not have well-de�ned
measures; under Cantor's measure, for example, the set [0; 1] \ Q is not
measurable. Lebesgue measure is much more consistent than this, in that
essentially all \natural" sets are measurable. Nevertheless, Vitali was able, in
1905, to construct a Lebesgue non-measurable set using the Axiom of Choice.
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Lebesgue's attitude towards this was circumspect; though his measure de�nes
whether a set is measurable or not, he personally did not believe in Vitali's
construction, rejecting its usage of the Axiom of Choice.

The concern that a set may appear large from the outside and small from
the inside turns out to be very valid, as the Banach-Tarski paradox most
strikingly shows. By manipulating non-measurable pieces of B3, Banach and
Tarski showed that volume could be, in a sense, duplicated. This extreme
inconsistency in measure theory highlights the need to only consider volumes
of measurable sets.

4.2 The Restriction of Measures to Measur-

able Sets

Lebesgue's restriction of his measure to the �-algebra of measurable sets
paved the way for a similar approach in the development of abstract mea-
sure theory. As seen through the de�nition of a measure, it is now considered
standard to only consider measures over a restricted set of subsets of a space.
The choice of a �-algebra as the restriction is very natural; as the standard
operations involving manipulations of sets are complements, unions, and in-
tersections, this means that not only are �-algebras closed under these oper-
ations, but that by generating the smallest �-algebra containing just a few
sets, many useful sets can be constructed. In particular, the most useful sets
in Rn in nearly all applications are those somehow closely related to open or
closed sets, and the �-algebra of Borel sets contains all of these.

The derivation of Lebesgue measure on Rn is to begin by considering
either intervals, if we are working in R1, or rectangles, if we are working
in Rn, and to de�ne their volume naturally as the product of their side
lengths. We can then determine the volume for all sets closely related to these
rectangles by considering �-algebras that contain these sets. The smallest
such �-algebra is the Borel �-algebra. Alternatively, we could consider the
slightly larger �-algebra consisting of all sets that satisfy Carath�eodory's
criterion of measurability.

The latter is the standard approach taken in constructing Lebesgue mea-
sure on Rn. With this, it is possible to prove many major theorems of measure
and integration theory without losing too much information. In particular,
Lebesgue measure ensures that the measure of the region under the graph
of a Riemann integrable function is identical to its Riemann integral, as well
as guaranteeing if the region under the graph of a function is Lebesgue non-
measurable, then the function must not be Riemann integrable. Lebesgue
measure restricted to measurable sets is also countably additive, which helps
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resolve issues in the development of Fourier series for when, for a sequence
of functions (fn)

1

n=1, we have that
P
1

n=1

R
fn =

R P
1

n=1
fn.

On the other hand, as it has been the norm for all of the 20th century to
consider measures over �-algebras, it is di�cult to say what might have been
proven in other de�nitions of a measure. The focus has been on considering
measures restricted to measurable sets, on which a strong �eld of measure
and integration theory has developed. So far, these �elds have appeared to
be consistent and su�cient for most applications to physical world problems.

The restriction of Lebesgue-measure to non-measurable sets is widely
accepted as a satisfactory resolution of the problem of measure; it is the
unique isometry invariant measure de�ned on the Lebesgue-measurable sets
that normalises the unit cube. In some sense, it is also a resolution of the
Banach-Tarski paradox, explaining that volume cannot be duplicated with
measurable sets. Nevertheless, criticism remains of this approach; for one,
it limits the sets over which one can de�ne a measure, losing the generality
of being able to perform operations in measure theory over all sets. As
a resolution of the Banach-Tarski paradox, it does not deny the physical
possibility of the duplication of volume.

These criticisms, however, are outweighed in the mathematical commu-
nity by the support of restrictions of measures. For it must again be noted
that non-measurable sets are highly pathological and non-constructive, and
so although they might exist heuristically in real life, it could never be known
how to actually create them. But most of all, mathematicians claim that by
considering measures over only measurable sets, they have unlocked a rich
and consistent area of mathematics in measure theory; by restricting to a �-
algebra of sets for which a measure acts over, many argue that much stronger
theorems can be proved than under more general conditions. In the develop-
ment of measure theory to this day, mathematicians have so far found that
though outer measures and metric outer measures are more general than
measures in acting on all sets, it is not possible to prove nearly as many
apparently useful theorems with these systems than with measures.

4.3 Verdict

Restricting Lebesgue measure to the �-algebra of Lebesgue-measurable sets
is a mathematically satisfactory solution to the problem of measure. It is, in
some sense, begging the question to suggest that restricted measures lead to
a more powerful theory of measure than (outer) measures acting on all sets,
as the mathematical focus of the last century has been �rmly focussed on the
former. In spite of this, it cannot be disputed that the restricted measure
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approach has been e�ective in leading to a consistent form of measure theory
that is general enough to prove most of its original motivations, such as
problems in Riemann integration or Fourier analysis.

But we must still ask whether this approach adequately resolves the dis-
parity between the physical world and mathematics? If we apply the prob-
lem of measure to its main motivation in determining a volume structure for
space, we have no choice to conclude that it is not possible to de�ne some
notion of volume to every region of space. This appears, at face value, to be
quite illogical; it seems bizarre that one region of space might have a well-
de�ned volume, whereas another region might not. Thus we must remark
that though a mathematically consistent solution to the problem of measure,
restricted measures fail to adequately model three-dimensional volume in the
physical world.

Finally, the argument put forward by many mathematicians on the patho-
logical nature of non-measurable sets seems to be fallacious. Though they
rightly suggest that the Axiom of Choice creates highly pathological and
non-constructive non-measurable sets, they nevertheless cannot deny the ex-
istence of such a set. But merely the existence of such a set suggests the
physical possibility of the Banach-Tarski paradox, which is in direct contra-
diction of many of the laws of physics, such as the conservation of energy.

We must therefore conclude that the restriction of measure is only an
adequate answer to the problem of measure in the realm of pure mathematics.
It fails to provide a suitable model of the volume of space in the physical
world, and hence fails to o�er a resolution of the Banach-Tarski paradox.
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Chapter 5

Conclusion

The Banach-Tarski paradox is a mathematical theorem that contradicts man's
natural intuition of the conservation of volume: that the sum of the volumes
of a (�nite) number of pieces is equal to the volume of the union of the pieces.
This paradox is also a proof in the negative to answer Lebesgue's problem
of measure: using the standard axioms of mathematics, does there exist a
measure on all the subsets of Rn that is countably additive, isometry invari-
ant, and gives the unit cube volume 1? If so, is this measure unique? In this
paper, we discussed whether weakening certain conditions of the problem of
measure led to a positive solution, and the implications of such a solution on
the Banach-Tarski paradox.

For R1 and R2, one can simply weaken the condition of additivity from
countable to �nite, and then the problem of measure is solved by an extension
of Lebesgue measure onto all subsets. This resolution is perfectly adequate;
the cost is merely the monotone convergence theorem. This weakens slightly
the development of integration theory in R1 and R2, but it nevertheless re-
mains consistent. Unfortunately, relaxing the additivity condition does little
to resolve the Banach-Tarski paradox, which occurs in a higher dimension
for which the paradox itself acts as a proof of the non-existence of a �nitely
additive measure. Moreover, non-additive measures as a model for the phys-
ical world notion of volume are merely blatant violations of the conservation
of energy. Thus it is infeasible to consider altering the condition of additivity
of the problem of measure for dimensions higher than 2.

If we accept the Banach-Tarski paradox as purely a paradox of abstract
mathematics, then we are �ne to consider the existence of non-measurable
sets as an adequate resolution of the issue. Lebesgue measure is the unique
measure on the �-algebra of Lebesgue-measurable subsets of Rn that is count-
ably additive, isometry invariant, and normalises the unit cube. Moreover,
restricting measures to measurable sets has allowed mathematicians, follow-
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ing in the footsteps of Lebesgue, to resolve many outstanding problems in
measure and integration theory. But despite the mathematical consistency
of this standard approach in measure theory, non-measurable sets fail to
adequately address the physical implications of the Banach-Tarski paradox.
The restriction of measure suggests that we cannot give every physical body
a well-de�ned volume. But this does not prevent one from working with non-
measurable sets, which can unexpectedly lead to the duplication of volume
via the Banach-Tarski paradox. Physically, this duplication violates the laws
of physics; new mass, and hence new energy, has been created out of noth-
ing, contradicting the conservation of energy. As a result, we cannot consider
the restriction of measure as a satisfactory resolution of the Banach-Tarski
paradox for applicable mathematics.

On the other hand, the removal of the Axiom of Choice clearly resolves
the Banach-Tarski paradox. For without the Axiom of Choice, we are unable
to create the non-measurable sets needed for the paradoxical decomposition
of B3. Though we cannot prove that the problem of measure holds true
in ZF+DC, it is consistent with ZF to assume that this is the case. The
greatest advantage of dismissing the Axiom of Choice is the reuniting of
properties of space and its mathematical models. ZF+DC is, in many re-
spects, a better foundation of mathematics than ZF+AC for mathematical
theorems modelling the physical world, not least for its removal of the dupli-
cation of volume apparent through the Banach-Tarski paradox. Yet though
altering the axioms of set theory is e�ective in retaining consistency in the
physical world, it introduces inconsistency in mathematics itself. The Axiom
of Choice is integral to many areas of mathematics, where it has been used
to prove foundational theorems upon which vast regions of further study
have ensued. Thus one cannot remove the Axiom of Choice entirely from all
mathematics. The only remaining possibility is to have one set of axioms {
ZF+DC+GM { for applied mathematics, and another { ZF+AC { for pure
mathematics. This, of course, leaves mathematics open to inconsistencies
when these two areas are bridged.

So we have found two resolutions to the problem of measure: one that
retains the consistency of mathematics, and one that retains the consistency
of the physical world. For resolving the Banach-Tarski paradox, our primary
motivation throughout this paper, removing the Axiom of Choice is clearly
the superior approach. Despite this, it remains an inelegant solution to what
is, essentially, an unsolvable problem: none of the approaches taken in this
paper give an outcome that is positive both mathematically and physically.

Perhaps we must return again to the problem of measure and considering
altering other conditions. Perhaps instead of showing the need for volume to
only be de�ned on measurable sets or only being used in a set theory without
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the Axiom of Choice, the Banach-Tarski paradox is a proof of the inadequacy
of Rn as a model of space. Solid objects, for example, consist of a �nite num-
ber of atoms. As the pieces used in the paradoxical decomposition of B3 are
uncountable, this implies that no paradoxical decomposition of a solid object
can physically occur. Nevertheless, the duplication of space alone is enough
to violate properties of �elds in physics. Thus the Banach-Tarski paradox
is conceivebly evidence that an uncountable model is insu�cient. In fact,
work of Randall Dougherty and Matthew Foreman shows the existence of
Banach-Tarski type decompositions in any complete separable metric space.
In order to avoid this, a countable incomplete model of space is needed. Like
the other proposed resolutions of the problem of measure, however, this pro-
posal comes at the cost of other properties generally desirable in modelling
space.

The Banach-Tarski paradox has no elegant solution, as a true paradox
ought to. The standard approach of mathematicians, to dismiss the para-
doxical decomposition as being irrelevant due to the non-measurability of
the pieces involved, does little to allay the physical concerns raised by the
paradox. The most popular alternative involves the resolution of these phys-
ical concerns through the alteration of the axioms of set theory, but in doing
so introduces disparities between areas of mathematics. As a paradox, Ba-
nach and Tarski's contradictory decomposition of a ball may have no graceful
resolution, but the beauty of this problem is the development of knowledge
ensuing in e�orts to understand and explain its issues.
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