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1. Computable Reals

The purpose of this section is to describe computable reals, then
prove some of the main properties of computable reals.
First we will define a computable real. Informally a computable real is
a number that has some finite representation. In the physical sciences
these numbers are of great interest because within the physical uni-
verse any number that can actually have some physical meaning will
only contain a finite amount of information. This is equivalent to it
having a finite representation. The computable reals are differentiated
from the normal Cauchy reals because within the Zermelo-Fraenkel set
theory with the Axiom of Countable Choice there exist numbers that
contain an infinite amount of information.
We also define informally a computable function as a function f which
could in principle be calculated using a mechanical calculation device
given finite but unbounded time and storage space. In the language
of computer science, this is to say that the function has an algorithm.
An algorithm is taken to consist of a finite set of instructions that
are described by a finite number of symbols which could in principle
be computed by a person with pencil and paper and is strictly deter-
ministic. Computable functions are vital to any formal description of
computable real numbers.

Formal definitions
Before giving a formal definition of the computable reals we formally
define a computable function. By Church’s thesis, an function is effec-
tively computable if it is partial recursive, which is to say that it can
be defined from the initial functions

(i) The zero function 0(n) = 0, ∀n ∈ N
(ii) The successor function n′ = n + 1, ∀n ∈ N
(iii) The projection function Uk

i (m) = mi, k ≥ 1, i = 1, . . . k

using a finite number of applications of

(i) Substitution given by f(m) = g(h0(m), . . . , hl(m))
(ii) Primitive recursion given by f(m, 0) = g(m)
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(iii) f(m, n + 1) = h(m, n, f(m, n))
(iv) The µ-Operator given by f(n) = µm[g(m, m) = 0] where

µm[g(m, m) = 0] ⇔ g(n, m0) = 0 and (∀m < m0)[g(n, m) 6= 0]

Note that the µ-Operator is a search operation; it says to compute
g(n, 0), g(n, 1), . . . until we find g(n, m0) = 0. Then m0 is the desired
value.
Using this definition of computable functions it is easy to construct
some simple example functions including the constant functions, addi-
tion and multiplication.
We are now able to properly define the computable real numbers. For-
mally a real number a is a computable real if it can be approximated
by a computable function f : N → Z such that f(n) = k where

(1)
k − 1

n
≤ a ≤ k + 1

n
There are three similar definitions which are also equivalent

• There exists a computable function f : Q+ → Q which maps ε
to r such that

(2) |r − a| < ε

• There is a computable sequence of rationals qi which converge
to a and such that

(3) |qi − qi+1| < 2−i

• There exists a computable Dedekind cut D converging to a,
where a computable Dedekind cut is a computable function
D : Q → {TRUE, FALSE} such that

∃r s.t. D(r) = true

∃r s.t. D(r) = false

(D(r) = true) ∧ (D(s) = false) ⇒ r < s

D(r) = true ⇒ ∃s > r s.t. D(s) = true

The function D is unique for each a ∈ computable reals.

Some of the basic properties therefore associated with the computable
reals are that it is closed under addition, subtraction, multiplication
and division. In fact, the computable reals are closed under any oper-
ation with a finite algorithm as if f is a computable function such that
f(0) = c for c a computable real, and g is any finite operation, then
f(g(0)) will still be some finite algorithm, and so the output of f(g(0))
will be computable.
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Incompleteness of the Computable Reals
At first glance it would appear that the computable reals are complete
as any Cauchy sequence {an} of computable reals must converge to a
computable real. The flaw in this way of thinking is that while each
ai will have a finite algorithm, there are a countably infinite number of
such ai’s. This means that the sequence itself may not be computable,
even if every element of the sequence is. If there is indeed no finite rep-
resentation of the sequence, that is, no finite algorithm for generating
the sequence, then the sequence would converge to a non-computable
real. For example, if we let c ∈ R be non-computable such that the dec-
imal expansion of c can be written c = c0.c1c2c3 . . . then the sequence
{an} = {ai|ai = c0.c1 . . . ci} converges to a non-computable real, but
each element ai is clearly computable as it is finite. Therefore the com-
putable reals are incomplete. Note that we have assumed that there
are reals that are not computable. This will be shown in later in the
paper without reference to the incompleteness proof.

The order relation on the Computable Reals
The order relation on the computable reals is necessarily non-computable.
If we let A be the algorithm which gives as output the computable real
a, note that here we are using the second definition of computable real,
then there is no computable function g which gives

g(A) =

{
1 a > 0
0 a ≤ 0

Suppose the first N ε-approximations given by A are 0, and after this
are given by some value greater than 0. Then if N is unknown but very
large, it is not clear how long we must wait before the function outputs
an ε-approximation which forces a to be positive. As the function g
must produce an output in some finite time, after the first M approxi-
mations it will output g(A) = 0. But suppose then that M < N , then
in fact a > 0. Therefore the order relation function is non-computable.

Countability of the Computable Reals
We now discuss the result attributed to Turing which is perhaps the
most important feature of the computable reals. This result is that the
cardinality of the computable reals is ℵ0, that is, the computable reals
are countable. At first glance, it might be supposed that the diago-
nal argument, used to show the reals are denumerable, could also be
used to show that the computable reals are denumerable. The stan-
dard diagonal argument applied to computable reals essentially states,
suppose by way of contradiction, that the computable sequences are
countable. Then we can let In be the n’th computable sequence, and
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let In(m) be the m’th element of In. Let J be the computable sequence
with J(n) = 1− In(n). Since J is computable, there exists some k ∈ Z
such that 1 − In(n) = Ik(n) for all n. If we consider n = k, then
1 = 2Yk(k). But then 1 is even, which is a contradiction.
The fallacy in this argument, here attributed to Turing, is the assump-
tion that J is computable. For normal sequences this is not an issue
as J is indeed a sequence, but it can be shown that it is incorrect to
suppose that J is computable. This is because although there is a
finite representation for each In, and thus a finite representation for
In(n), this does not imply there is a finite representation for J . There
is in fact no possible finite representation as the problem of enumer-
ating computable sequences is equivalent to Hilbert’s halting problem
. In the language of computer science, the halting problem is the
question of determining whether a program will ever produce an out-
put, or will simply continue forever without producing further output.
If there was a computable method by which we could enumerate the
computable sequences, then J would indeed be computable, but as we
cannot enumerate the computable sequences by finite means, therefore
the computable reals are not uncountable, that is, they are countable.
As the Cauchy reals are uncountable, this gives us that most reals
are non-computable. This result was used previously to show that the
computable reals are incomplete.

Axiom of Choice and the construction of the Computable Re-
als
It is at this time that we wish to remove the Axiom of Countable
Choice. This is the weakest of the choice axioms, in that it is implied
by all stronger choice axioms, and is the statement that:

If S is a countable, disjoint set of non-empty sets, then there is a
subset T of the union of S which has exactly one element in common
with each member of S.

More simply put, this is equivalent to stating that given a countable
set S we can arbitrarily choose elements of S to make any subset. In
the case of the construction of the reals, this axiom is vital for the con-
struction of the non-computable reals as, by definition, these cannot
be computed by non-arbitrary means.
Mathematically and philosophically the axiom of choice is in some sense
the least accepted of all the axioms in the Zermelo-Fraenkel system.
Philosophically and physically the axiom is problematic as within the
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finite physical universe it is not possible to have a process which neces-
sarily requires an infinite amount of information. Mathematically the
axiom is problematic in that it allows the construction of results that
seem in direct opposition to what is expected or indeed realistic. The
most famous example of this is the Banarch-Tarski Paradox which, sim-
ply put, states that it is possible to decompose the unit ball in R3 into
five disjoint pieces, then recombine them using only translations and
rotations into two balls of the same size. This is of course unacceptable
if we wish to use mathematics as a model for the real world. As a result
of this, mathematicians prefer to avoid the use of the axiom of choice
is possible, and if this is not possible, then an attempt is made to use
the weakest axiom of choice possible.
With this in mind, we decide to abandon the axiom of choice in the
construction of the real numbers. So we construct our set CR as the
convergents of Cauchy sequences of elements in Q. So, for simplicity
Q is taken to be the set of elements {±p/q|p, q ∈ N, GCD(p, q) = 1},
where GCD is the greatest common divisor of two natural numbers.
This formulation of Q has a natural bijection with the normal formu-
lation of Q, however for the purposes here it is more intuitive. If we
let {an} be a Cauchy sequence of elements in Q then we have that the
sequence itself must be computable. To show this, suppose by way of
contradiction that the sequence is not computable, that is, there exists
no finite function which allows us to determine the elements of {an}.
Then the elements of {an} must have been chosen arbitrarily, but this
requires the axiom of countable choice which we have decided will not
apply. Therefore there must exist a finite function which allows us to
determine the value of each ai ∈ {an}. When such a function exists,
we call the sequence computable.
We then have a Cauchy sequence with elements in Q such that each
element of the sequence is determined by a computable function. But
then we have that the convergent of this sequence, which will be in R,
is completely determined by this computable function. Therefore the
convergent will be a computable real. As this holds for any sequence
of elements in Q, the set of convergents of all sequences will be at least
a subset of the computable reals, and from Equation 2 we see that any
computable real can be expressed in this fashion, albeit not uniquely.
Therefore the set CR is in fact the set of computable reals.
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Completeness of the Computable Reals
We now wish to show that, without the axiom of choice, the set of
computable reals are, in fact, complete. Now, as usual a complete set
is a set for which any Cauchy sequence {an}, that is, ∀ε > 0, ∃Nε ∈ Z
such that m,n ≥ Nε ⇒ |am − an| < ε, converges to a computable real.
This proof works much the same as the previous construction of the
computable reals. As we do not have the axiom of choice, any sequence
will be computable, that is, there is a finite function which determines
each element of {an}. But then the convergent will be determined by
the computable function which generates {an}. This gives us that the
convergent is computable, and so the Cauchy sequence converges to a
computable real. Therefore the computable reals are complete if we
discard the axiom of choice.

Final remarks
In this section we have attempted to give a reasonably rigorous def-
inition of the computable reals and some of their main properties as
these appear in the context of standard analysis. We have then gone
on to remove the Axiom of Choice to allow a natural construction of
the computable reals. With this construction we find that some of
the fundamental properties of the computable reals change, primarily
the completeness. However, as the proof of the countability still holds
we do not have the issues associated with non-measurable sets which
leads to the Banarch-Tarski paradox. However, we also recognise that
this construction is not sufficient for pure mathematics as some funda-
mental results such as Tychonoff’s Product Theorem do not hold. For
applications in fields of science which deal only with finite applications,
such as computer science, we believe that this construction may be ad-
equate as a model for the reals. With this in mind, in the next section
we build a simplified model of set theory for application in computer
science.
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2. Constructible Sets

In this section we discuss an alternative, constructivist set theory
which may be useful for application in computer science and other
physical fields. The motivation for this is basically that the Zermelo-
Fraenkel system consists of a large number of separate axioms which
seem to be somewhat arbitrary. This seems unusual given that the
Zermelo-Fraenkel set theory is the basis for almost all mathematics,
and through this, for much of the rigorous, formal science used today.

The Inclusion Function and the Natural Numbers
With this in mind we consider the original description of a set as a col-
lection of elements. Then we define a set to be a collection of other sets,
together with the inclusion operation whereby previously constructed
sets can be ’included’ into a set. This inclusion function can be more
formally described as

Definition 1. For any computable function f which assigns a boolean
value to each previously constructed set, there exists a set S = {A|f(A) =
1}. Then f is the inclusion function which generates S.

We also assume that it is possible to define an infinite class of com-
putable functions, so long as each is computable. It is through this
process that we are able to construct infinite sets. Throughout, we will
use the nomenclature that A is a previously constructed set, and S is
the set we are currently constructing.
Now, using nothing but this inclusion function we can go about con-
structing some simple sets. We first show that the empty set must
exist. We start with no previously constructed sets. Then the inclu-
sion function f has no sets A such that f(A) = 1; therefore S0 = {},
that is, the empty set exists.
We will now go about constructing the natural numbers. Let f(A) =
1, ∀A. Then we have

S1 = {{}}
S2 = {{}, {{}}} = {S0, S1}
S3 = {S0, S1, S2} = {{}, {{}}, {{}, {{}}}}
Sn = {S0, S1, . . . , Sn−1}

This is precisely the definition of the natural numbers in normal set
theory, so if we apply this particular inclusion function up to transfinite
induction then Sω, where ω is the first transfinite ordinal, is precisely
the set of natural numbers. So we have successfully constructed the
natural numbers within this constructivist framework.
We now wish to derive some simple operations which follow from the
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inclusion function. First we will show that the inclusion function im-
plies an ’exclusion’ function which removes an element from a set. So,
let S be some set. Then from the definition of a set, there exists a
computable function such that S = {A|f(A) = 1}. Let g be a function
such that

g(A) =

{
f(A) A 6= A0

0 A = A0

Then g is the inclusion function which corresponds to the set S/A0, and
so it is possible to remove an element from a set, that is, ’exclusion’ is
possible.

Equivalence
With exclusion we can now define a ’size’ of sets. We call the complex-
ity of a set the number of single inclusions necessary to create the set,
minus the number of single exclusions. That is,

Definition 2. For S = {A1, A2, . . . , An}, then the complexity of S is
given by

‖S‖ =
n∑

i=1

‖Ai‖+ n

For example, the sets corresponding to the natural numbers have
‖S0‖ = 0, ‖S1‖ = 1, ‖S2‖ = 3, . . . ,

‖Sn‖ = n + ‖Sn−1‖+ . . . + ‖S1‖
= n + (n− 1) + 2‖Sn−2‖+ . . . + 2‖S1‖

= n +
n−1∑
i=1

i−
n−1∑
i=1

i2

= n +
n2(n− 1)

2
− n(n− 1)(2n− 1)

6

using the formula for square pyramidal numbers.
For S containing a countably infinite number of elements, simply let
n = ω and for all calculations use ordinal arithmetic. When S is infite,
it is usually only necessary to be able to compare the complexity of
sets rather than to find the actual value.

We can now define an equivalence relation such that the constructed
sets S and T are equal if and only if they contain the same elements
and if ‖S‖ = ‖T‖. We note that this is indeed an equivalence relation
as reflexivity, symmetry and transitivity hold as these hold for sets
normally, so the first condition is satisfied, and they hold for ordinal
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arithmetic, so the second condition is satisfied. We have chosen to
describe equality in this way so as to avoid some of the paradoxes of
naive set theory.

Basic Results
We now will attempt to prove some simple results within the frame-
work.

Theorem 1. Sets cannot contain themselves.

Proof. This result comes from the definition of equality of sets, and is
in fact one of the main reasons equality was defined in such a manner.
Suppose that S = {A0, A1, . . .}. Then suppose there exists some i such
that Ai = S then ‖{A0, A1, . . . , Ai−1, S, Ai+1, . . .}‖ > ‖{S}‖ = ‖S‖ +
1. But this is a contradiction as S = {A0, A1, . . . , Ai−1, S, Ai+1, . . .}.
Therefore there cannot exist a set which contains itself. Note that this
proof relies heavily on the fact that complexity is discussed in terms of
ordinal numbers and ordinal arithmetic, and not cardinal arithmetic.

�

The main possible objection to this theorem is the set S = {S}
which appears as S = {{{. . .}}}, as this set appears to contain itself.
However we note that if ‖S‖ = ω then ‖{S}‖ = ω +1. But as S = {S}
therefore ‖S‖ = ‖{S}‖, but ω 6= ω + 1. Therefore S 6= {S}. This is
not really surprising as we have constructed S using S, which is not
within the definition of a set. Therefore S = {S} is not a constructible
set. Note that there is indeed a constructible set S = {{{. . .}}} but
that it is incorrect to write this as S = {S}.

Corollary 1. There is no set of all sets.

Proof. Suppose by way of contradiction that there exists a set of all
sets, call it V = {A0, A1, . . .}. That is, we have constructed every set
which it is possible to construct, and taken the inclusion of all such
sets. Then as V is a set, it must be in the set V , but this is impossible
by the theorem. Therefore there exists no set of all sets. �

This is the answer to Cantor’s paradox, and is in fact the same an-
swer as that given by ZF. Cantor’s paradox states that there is no
largest cardinal, that is, there is no set of all sets. This was not seen
by Cantor as a paradox, merely as a merely as a statement about the
nature of sets. In ZF this position is agreed, there is indeed no set of
all sets. Here we have shown that this result carries into constructible
sets.
This corollary also gives a solution to the Burali-Forti paradox, which
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shows that there can be no largest ordinal. The Burali-Forti paradox
states that the set of all ordinal numbers Ω must itself be considered
an ordinal number, and so it has a successor given by Ω + 1. But then
Ω < Ω + 1 ≤ Ω which is a paradox. This is solved for constructible
sets as we cannot construct the set of all ordinals, merely the set of
all ordinals which have been previously constructed. This circumvents
the problem completely, however has the unfortunate property of not
being able to construct the set of ordinals.

Some ZF Axioms
Now we will attempt to derive some of the axioms of Zermelo-Fraenkel
set theory. We begin with the Axiom of Elementary Sets, which states

Theorem 2. Axiom of Elementary Sets
There is a set with no elements, called the empty set, and for any two
sets a and b, there exist sets {a} and {a, b}

Proof. We have already proved the existence of the empty set. So,
suppose a and b are any previously constructed set. Then define the
function

fa(A) =

{
1 A = a
0 A = b

and

fa,b(A) =

{
1 A = a or A = b
0 A 6= a and A 6= b

Then fa generates the set {a}, and fa,b generates the set {a, b}. �

Next we work with a modified version of the axiom of union. Nor-
mally this axiom is not restricted to finite sets, however it is deemed
necessary for constructible set, so:

Theorem 3. Axiom of Union
If S is a finite constructible set, then the union of S is a constructible
set.

Proof. If we let SA = {A1, . . . An} be a set, where Ai = {ai1, . . . , aimi
}

then for Ai to be previously constructed set we must have that aij is
also a previously constructed set. We also have that the function fA,i

which generates Ai is computable. Then we have that the function fS,a

for which

fS,a(A) =

{
1 A = aij for some i, j ∈ N
0 A 6= aij for some i, j ∈ N

Then fS,a certaintly generates the union of SA and must be computable
as it is the finite union of computable functions and thus has finite



COMPUTABLE REALS AND CONSTRUCTIBLE SETS 11

representation. Unfortunately, we cannot prove this result for infinite
SA, as although each fA,i is computable, an infinite collection of them
need not necessarily have finite representation. �

Russel’s Paradox
One of the primary motivations for the development of axiomatic set
theory was the existence of paradox within naive set theory. Cantor’s
paradox has been discussed earlier. Another of the primary paradoxes
of naive set theory is Russel’s paradox which essentially states that the
set S such that S = {A|A /∈ S}. We show that this paradox does not
hold in this framework by supposing by way of contradiction that there
is a computable function f which generates S. Then f has assigned a
boolean value to each previously constructed set A. But the set S is
such that each set A is both in the set, and not in the set, therefore
must have boolean value 1 and 0. But the function f assigns only one
such value to each A. Therefore we have a contradiction, and so Rus-
sell’s paradox does not hold.

The Computable Reals
We now return to constructing some important sets. First we will con-
struct the set of rational numbers. We want a rational number to be
an ordered pair of natural numbers, together with a sign value. That
is, some rational number r can be written r = (±1, p, q) = ±p/q for
p, q ∈ N, q 6= 0, GCD(p, q) = 1. So we say for r > 0, r = {Sp, {Sq, {}}}
and for r < 0, r = {Sp, {Sq, {}}, {{{}}}}. We then have that these sets
are indeed computable as they are a finite collection of finite sets. Then
the set of all such r is indeed the set of rational numbers. Note that
the formulation given has been chosen so that each value of r has a
unique representation, and that this requires the condition q 6= 0.
We are now in a position to return to the original problem of com-
putable reals. Recall that we originally defined computable reals to be
computable sequences of rationals. As we now have a set of rationals
we can do much the same construction tog ive the computable reals in
constructible sets. First we must make sure that we can in fact con-
struct an ordered infinite sequence. To do this we define the counting
elements 1̄ = {{{}}}, then 2̄ = {1̄}, . . . ī = { ¯i− 1}. These elements are
clearly constructible as they are finite, and are distinct from every ra-
tional. Then the set {{A1, 1̄}, {A2, 2̄}, . . .} can be viewed as an ordered
infinite sequence. If we restrict Ai to the rationals then this becomes
an infinite sequence of rationals, call this an. Now suppose an is a
Cauchy sequence which converges to a. Then as the sequence is in fact
a set, there must be a computable function which generates the set.
Then the value a of the convergent is completely determined by the



12 JAMES TAYLOR U4395303

computable function which generates the set an. But this is precisely
the definition of a computable real given in Section 1. Thus we have
used our simplified version of set theory to construct the computable
reals.

Final Remarks
In this section we have attempted to provide an alternative set theory,
one based on constructivist principles. This theory is in many ways
similar to Type theory, as the hierarchy of construction gives a natural
way so that sets cannot be defined in terms of themselves, the essence
of type theory. We have attempted to expound upon this theory, giv-
ing some preliminary results as well as constructing some important
sets. Hopefully the links with computability theory are clear, as sets
are here defined to be generated by computable functions. As such this
model may be useful in computer science, where only the computable
is of any real relevance.
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