
Is mathematics cumulative?

Hugh Parsonage

17th November 2008



Contents

Introduction 4

1 What is the question asking? 7

1.1 Definition of mathematics . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Notions of “cumulative” . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Absolutely cumulative . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Strictly cumulative . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Weakly cumulative . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Properly cumulative . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Figuratively cumulative . . . . . . . . . . . . . . . . . . . . . 9

1.3 How to measure the size of mathematics . . . . . . . . . . . . . . . . 10

1.3.1 Different ways of characterizing theorems . . . . . . . . . . . . 10

2 Blemishes in the history of mathematics 13

2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Algebraic number theory . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Fermat’s Last Theorem . . . . . . . . . . . . . . . . . . . . . . 18
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like to thank and acknowledge Dr Jason Grossman for his thoughtful contributions,
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Introduction

Today, any educated person is familiar with some form of mathematics. And math-

ematics students are certainly familiar with its philosophy: mathematics is the

“language” of science. Synonymous with logic in some senses and a rich extension of

it in others, students learn its strong, unassailable logical foundation. All students

know that all theorems, once proved, whether from Euclid thousands of years ago

to propositions proved in the past year, will be regarded as true forever. Indeed,

logic, truth, and mathematics are often regarded as indistinguishable: Ayer felt

compelled to regard statements in mathematics as not merely demonstrably true,

but tautological.(1, p. 33)

Every student of it knows that mathematics is not like science as described by

Popper(8) or Kuhn.(5) It does not seek to disprove the contemporaneous paradigms.

There are no “mathematical revolutions”, where the mathematics of the past is

radically and completely changed because a discovery shows it to be false. There is

no thought that the veracity of mathematical statements is connected to their utility

or their empirical exactitude. (One does not believe that 12 × 12 = 144 because

most of the time we have a twelve-by-twelve square array of apples it contains one

hundred and forty-four apples.)

What I hope this essay will prove is that these notions of mathematics are

näıve or wrong. The historical record has numerous examples of false mathematical

statements that have been accepted as theorems and the development of mathematics

is not uniform and calm.

This essay is concerned with the history of mathematics as a study in mathemat-

ical thought. It will turn to such questions as: What is the significance of pseudo-
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theorems in judging the firmness of mathematical statements? To what extent do the

axiological components of mathematical thought and writings destroy or defend the

mathematics itself? Is the gradual acceptance of natural numbers, the number zero,

the integers, the rational numbers, the real numbers, the complex numbers, and the

hypercomplex numbers coherent with a cumulative mathematics or does the initial

(and persistent) denial of the existence of these sets deny mathematics any such

quality? Are non-Euclidean geometries merely additional geometries to Euclidean

geometry, or does the former contradict the latter? Are bad proofs inherent to

mathematics or are they not to be counted? Was the published theorem that a

function has a derivative at every point at which the function is continuous just a

result of uncharacteristically poorly-wording or is the flaw inherent to mathematics?

When it is written in history that a proof is, say, “not rigorous by modern standards”,

what does this mean for the quality of mathematics? Is saying all theorems around

today are rigorous (by modern standards) vacuous or profound?

As a study in mathematical thought, we should not be swayed by ideology or

idealizations of mathematics that do not stand the scrutiny of history. To do

this, it will be useful to distinguish between normative and descriptive accounts

of mathematics. Put simply, a normative account of something states what it

ought to be; a descriptive account of something states what it is and how it has

been. A purely normative historical account of mathematics in this essay would

be useless. Indeed, if we define mathematics as the body of knowledge dealing with

quantity, space, and set theory that is the result of perfect deductive logic alone, then

mathematics is cumulative and this essay is a boring ipso facto. What is (I hope)

more interesting is how mathematics has actually operated. For it has operated far

from perfectly.

It will also be important to ensure that our history of mathematics does not

become Whiggish. Whig history is a mode of studying the people and societies of

the past as if they were inevitably converging to the present or that actors of the

past were striving for today’s ideals. In the context of mathematical history, I am

urging caution in reading, say, the 14th century theory of infinite series expansion by

Madhava of Sangamagrama as a foundation for Fourier analysis in the 19th century
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or the mathematical analysis of today – Madhava developed infinite series with scant

regard for the Defence Signals Directorate or iPods. I am also urgin

I will begin this essay with a closer read of the question and then discussing four

paths in the history of mathematics, looking at the branches of analysis, algebraic

number theory, and geometry, as well as the growth of the various number systems.
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Chapter 1

What is the question asking?

1.1 Definition of mathematics

Wikipedia, in its English article “Mathematics”, defined mathematics as

the body of knowledge and academic discipline that studies such concepts

as quantity, structure, space, and change.

Wikipedia’s definition was a bit grammatically insecure (a “body of knowledge” can

“study something?), so I edited it:

Mathematics is the body of knowledge and academic discipline arising

from the study of such concepts as quantity, structure, space, and change.

Today, 16 November 2008, Wikipedia’s definition had changed to:

Mathematics is the academic discipline, and its supporting body of

knowledge, that involves the study of such concepts as quantity, structure,

space, and change.

This is the definition I will use for this essay.
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1.2 Notions of “cumulative” in bodies of knowl-

edge

1.2.1 Absolutely cumulative

For the sake of extremism, let us characterize a body of knowledge as absolutely

cumulative if every statement that has ever been declared to be a theorem is true.

1.2.2 Strictly cumulative

Consider mathematics throughout history. Certainly what is called mathematics is

larger than what it was when it began. Let Bt be the set of all theorems T accepted

into the corpus at time t. Then a body of knowledge is strictly cumulative if

Bt ⊂ Bt∗ for all t ≤ t∗. The subtle difference between this definition and the one for

absolutely cumulative is in the characterization of T as “a theorem at time t”. This

is meant to exclude theorems from naive or malicious amateur mathematicians who

in writing “Theorem 1.1 2 + 2 = 73” deny mathematics ever being absolutely

cumulative. But if a bad proof makes a conjecture a theorem and this statement

makes it into a ‘well-respected’ mathematics journal or finds acceptance amongst

mathematicians of a ‘high-regard’, then mathematics is not strictly cumulative. As

my scare-quotes suggest, the characterization of mathematics as strictly cumulative

will be fuzzy. As we will discover, however, the fuzziness will not be a problem.

1.2.3 Weakly cumulative

Our next definition is motivated by the wish to credit bodies of knowledge that may

have flaws at the boundaries but whose core is cumulative. Let Bt be defined as

before. Then a body of knowledge is weakly cumulative if there is a core to the

body of knowledge, Ct, with Ct ⊂ Bt for all t such that Ct is strictly cumulative.

Of course, this definition is very weak. One could choose CT = ∅ and prove

theology or, indeed, a random statement generator weakly cumulative. To this,
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the obvious rejoinder is that the larger the size of CT the firmer or stronger the

accumulation of the body of knowledge.

1.2.4 Properly cumulative

In our discussion on the number systems, we accepted that the apparent stubbornness

of mathematicians in the face of higher number systems was more a noble scepticism.

Nevertheless, mathematicians were wrong in some sense by discriminating against

negative numbers and by terming pejoratively
√
−1 ‘imaginary’. When I say that

the mathematicians of the past were “wrong”, I am not taking aim at their tastes,

but at their lack of ability to see the truth when it was presented to them. Just

as a weakly cumulative body of knowledge can remain so by offering the empty set

as their eternal success, so too could an improperly cumulative body of knowledge

reject almost everything that was offered in order to preserve its integrity. This is

what motivates our next definition.

We say that a body of knowledge is properly cumulative if every human

submission to it is correctly decided as true or false by the community that owns

the body of knowledge. It is worth noting that this judgement can only be made

retrospectively.

1.2.5 Figuratively cumulative

Of course, there is the commonplace notion of cumulative meaning to grow into a

heap or mass. For instance, a cathode in a galvanic cell may accumulate positive ions

and a mass may form. An analogy can be drawn between mathematics and the mass

accumulating around such a cathode: the latest accumulation is possible because of

the previous accumulation and it proceeds in a locally chaotic (at the microscopic

scale) but globally steady (at the scale of the cell) way. We could say that a body

of knowledge is figuratively cumulative if it resembles this image.

In this sense of cumulative, mathematics could well be cumulative. It would allow

for mathematics to lose a few theorems (as a galvanic cell might lose some mass) as

long as the overall progress is one of accumulation. However, allowing mathematics
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to be called cumulative in this sense would be misleading. The common wisdom

is that all mathematics is true and that theorems are ever-present. In the light of

the history, this thesis cannot be maintained. It is disingenuous to call mathematics

“cumulative” when it is only figuratively cumulative.

1.3 How to measure the size of mathematics

In order to give a meaningful answer to the question “Is mathematics cumulative?”

we need to know what cumulative means, but we also need to know by what measure

such an accumulation would be said to take place.

1.3.1 Different ways of characterizing theorems

True/False

If we mean a theorem in the descriptive sense of “the statement in a recognized

mathematics text headed Theorem”, a theorem can be either true or false. Of

course, the term ‘false theorem’ to most is a contradiction: a statement can only be

a theorem if it is true.

Nevertheless, the distinction is important to the superquestion. If we only de-

fine theorems to be true statements, the answer to the question “Is mathematics

cumulative?” is trivial. Furthermore, if the following appeared in a mathematics

text,

Theorem 1.3.1. Let x, y, z be the lengths of the sides of a right-angled

triangle, with z the length of the hypotenuse. Then

x2 + y2 = z2.

most would probably not object to calling this a theorem, with the typo implicitly

corrected. Accepting a theorem as true is not really affirming what is written is true.

10



I claim that what is involved in accepting a theorem is not accepting exactly what

has been written down, but accepting the thoughts of the author as expressed in the

actual text. This is not a widely-accepted view and a defence of it is beyond the

scope of this essay.

Interesting/Uninteresting/Trivial

Suppose we do not accept that false statements are theorems, there is still the

issue of whether trivial or even uninteresting theorems should be counted with equal

weight (or even whether they ought to be counted at all). Mathematicians already

delineate between Theorems (which are important nontrivial statements), Corol-

laries (which are important statements, but easily follow from nearby Theorems),

Propositions (which are uninteresting, unimportant statements that may or may

not easily follow from other Theorems and Propositions), and Lemmata (which are

unimportant statements from which important Theorems follow).

The answer to which to count is not easy. For example, how many theorems are

in the following selection?

Proposition 1. The projection π : Y × Z → Y given by π(y, z) = y for

all (y, z) ∈ Y × Z is continuous.

Corollary 1.3.2. If f : X → Y × Z is continuous at x ∈ X then

f1 : X → Y and f2 : X → Z are continuous, where f(x) = (f1(x), f2(x)).

Proof. f1 = π ◦ f . �

Another problem arises when we consider that many propositions are used to build to

a single theorem which encompasses them all. One example of this is in the definition

of the Lebesgue integral. The definition usually follows four stages: defining the

integral for simple functions, then for bounded functions supported on a set of finite

measure, then for non-negative functions, then for all functions. At each stage,

authors (such as Stein (9)) prove that the integral thitherto defined is linear, additive,
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monotone, and obeys the triangle inequality. The final proposition encompasses the

previous propositions, yet relies on them being true.

Conclusion

My conclusion is that mathematics, as a body of knowledge, does not count as

separate theorems which do not add to the body of knowledge. Thus, corollaries and

theorems which are incorporated in higher theorems ought not to be counted.

Throughout this essay, I have taken to a descriptive account of mathematics and

in doing this I have taken a loose definition of what constitutes a theorem: a theorem

is something which is called a theorem by the contemporaneous mathematicians.

This avoids the difficult question of what (even descriptively) is the essence of a

theorem. A more rigorous follow-up of the essay would be able to answer this

question.
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Chapter 2

Blemishes in the history of

mathematics

2.1 Analysis

One of the most important concepts in mathematical analysis∗ is the continuous

function. Leonard Euler (1707 – 1783) introduced the notion of the mathematical

function and the notion of continuity was implicit already. To Euler’s contemporaries,

“continuous” was understood to mean “analytic almost everywhere” in today’s ter-

minology.†

This led to several problems and inadequacies. One of these was the calculation

of derivatives of continuous functions. Since continuity was equivalent to analyticity,

every continuous function had a power series expansion.

f(x) =
∞∑

n=1

anx
n.

∗We will restrict ourselves to the discussion of real analysis.
†Continuous nowadays means small enough changes in the input will give changes in the output

as small as desired. Analytic functions are necessarily infinitely-differentiable. So “analytic” is a
stronger notion that “continuous”. (For example the function y = |x| is continuous but not analytic.
It is, however, analytic almost everywhere.)
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Joseph-Louis Lagrange (1736 – 1813), in his Theories des Fonctions Analytiques of

1797 defined the derivative of a continuous function as the second coefficient of the

power series. However, no formal definition of continuous was attempted. This lack

of definition resulted in some theorems which, if stated literally, are false today. (For

example, it was thought that a continuous function was differentiable everywhere or

almost everywhere. Karl Weierstrass (1815 – 1897) disproved this by constructing

counterexamples like

f(x) =
∞∑

n=1

1

2n
cos(3nx), (2.1)

which is continuous everywhere but nowhere differentiable.(6, p. 246) See figure A

on p. 46.)

Augustin-Louis Cauchy (1789 – 1857) in 1821 introduced a formal definition of

continuity: Let f : R → R be a function of x that is bounded on a finite interval.

Now, the value of f at x being f(x), consider the difference in the value of f an ever

decreasing increment α from x:

f(x + α)− f(x)

This depends on α and x. Cauchy then defines the notion of continuity in the

following way:

Cela posé, la fonction f(x) sera, entre les deux limites assignées à la

variable x, fonction continue de cette variable, si, pour chaque valeur de

x intermédiaire entre ces limites, al valeur numérique de la différence

f(x + α)− f(x)

decroit indéfiniment avec celle de α.‡

‡The function f(x) will be . . . continuous if, for each value of x between those bounds, the numerical
value of the difference

f(x + α)− f(x)

decreases indefinitely with α.(2, Translation from p. 68)
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I have included Cauchy’s original words because the definition he gives is vague. In

particular, it does not distinguish between continuity and uniform continuity.

A function f : R → R is uniformly continuous if for every ε > 0 there

exists a δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

for all x, y ∈ R

A function f : R → R is continuous if for every ε > 0 and for all y ∈ R
there exists a δ > 0

|x− y| < δ =⇒ |f(x)− f(y)| < ε

for all x ∈ R.

The subtle difference is that in the modern-day definition the value of δ is chosen

with regard to the value of y. In modern terminology, the definition Cauchy gave was

that of uniform continuity, which is a stronger notion of continuity: all uniformly

continuous functions are continuous but not all continuous functions are uniformly

continuous. (See figure 2.1.) The failure to grasp this subtle difference meant that

Figure 2.1: The graph of the function y =
1

x(1− x)
, on (0, 1), which is

a continuous but not uniformly continuous function.
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many false theorems were spawned. One of them being in relation to multivariable

functions:

If the variables x, y, z, . . . have the fixed and determined quantities X, Y, Z, . . .

as limits and if the function f(x, y, z, . . . ) is continuous with respect

to each variable x, y, z, . . . in the neighborhood of the system of values

X, Y, Z, . . . , f(x, y, z, . . . ) will have the limit f(X, Y, Z, . . . ).

The theorem is not true. The statement is only true if the function is uniformly

continuous with respect to each variable.

2.1.1 Discussion

Cauchy’s error is salient to this article because it is an example of an apparently

sophisticated theorem that is wrong as stated. A possible way in which the cumula-

tiveness of mathematics is rescued would be to deny that Cauchy’s statement should

have been admitted into the body of knowledge in the the first place. A defence of

this position runs something like this: Cauchy’s definition of continuity was used to

prove a number of theorems (such as the multivariable function theorem), but the

definition was too vague or “unmathematical”, and thus not of the requisite standard

needed to truly be a theorem.

Is Cauchy’s statement unmathematical? The correct answer is, of course, another

question: what is the essence of mathematical as opposed to unmathematical state-

ments? The typical answer is that mathematical statements are well-formed and

their terms well-defined. As our use of the prefix well- suggests, the word itself is not

held to the same standard as its definiendum! To be fair, we will not quibble over the

essence of a well-formed statement. However, arguing over the nature of well-defined

terms as opposed to ill-defined statements is fair game. As a provisional definition, we

could define a well-defined term as a term that is understood unambiguously by the

readers or, equivalently, one that is strongly defined. For us, the contentious word is

neither “unambiguously” nor “strongly” but “understood”. A more descriptive–that

is, historically valid—definition of a well-defined term is a term that is thought to

be understood by its readers.
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I do not have much evidence as to whether Cauchy’s definition was well-understood

to its readers. Considering Cauchy’s prominence as a mathematician and considering

the numerous textbooks and mathematical papers that were published for him that

included this definition, it is likely that the definition was well-understood. It is

easy to see, under this weak assumption, that the defence of the cumulativeness

of mathematics in this case fails, for the only remaining defence would rest upon

the idea that mathematical statements are easy to spot now, or that we have some

strong test to determine whether a mathematical statement is well-defined and well-

formed. And that is not the case. So Cauchy’s statement that f is continuous at x

if f(x + α)− f(x) decreases indefinitely with α is, descriptively, as mathematical as

the modern-day definition of continuity at a point.

The moral of the story of Cauchy is that we are no wiser than we have ever been

to judge whether a statement is unmathematical or mathematical. Since seemingly

mathematical statements have been wrong in the past, we simply cannot expect our

beloved theorems to not be similarly exposed in the future. What is probably fair

to say, though, is that mathematicians soon discover mistakes. (In this case, it was

Weierstrass.)

2.2 Algebraic number theory

Number theory is the branch of mathematics concerned with the properties of num-

bers, in particular the integers. It is one of the oldest branches of mathematics. The

Hellenistic Greeks were avid scholars of the subject and the most famous, Diophantus

of Alexandria, from whose name we get Diophantine equations—indeterminate poly-

nomial equations in Z—which have been the subject of study up until the modern

day. (Indeed, the Holy Grail of Diophantine equations, Matiyasevich’s theorem,

which states that Diophantine equations are in general unsolvable, was proved in

1970.)

Algebraic number theory is a major branch of number theory which studies

algebraic structures on Z and more exotic numbers systems. One of the most

famous unsolved problem in mathematics, Fermat’s Last Theorem, had many wrong
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attempts that led to the development of algebraic number theory. We examine some

of these attempts.

2.2.1 Fermat’s Last Theorem

Fermat’s Last Theorem is the statement that

Let n be an integer n ≥ 3. Then xn + yn = zn has no solution in the nonzero integers.

In 1637, Pierre de Fermat (1601 – 1655) wrote in a margin of his copy of Diophantus’

Arithmetica that he had found a “truly marvellous proof” of the proposition but that

the margin was too small for it. Nevertheless, mathematicians for the next 350 years

tried and failed to prove it. It is one of the most famous mathematical problems

and probably attracted the largest number of misproofs. The misproofs themselves

were generally quickly unmasked, as a proof was highly prized and jealously coveted.

However, a few instances were not revealed and, while the proofs were actually easily

repaired, the lemmas were not identified as flawed.

One particular example comes from Euler, “without a doubt the greatest math-

ematician of his time”.(3, p. 39) In his textbook Vollständige Anleitung zur Algebra,

the uniqueness of factorization was assumed in several proofs, even when the system

he was dealing with did not admit it.

The “uniqueness of factorization” is the property of the fundamental theorem of

arithmetic∗ in other domains. In Z[
√
−5], for example, it is not true. (The ring

Z[
√
−d] is the set of all complex numbers a+b

√
−d where a, b ∈ Z. They have many

interesting properties and have applications to factorization.)

The numbers 2 and 3 are prime and it can be shown that 1 +
√
−5 and 1−

√
−5

are also prime. Yet

6 = 2 · 3 = (1−
√
−5)(1 +

√
−5).

That is, there is a number, six, that is not uniquely expressible as a product of

∗In Z, the fundamental theorem of arithmetic says that every number is expressible as the
product of primes and (importantly) that this representation is unique (up to rearrangement of the
primes). So 54 = 22×32 and there are no other primes p1, p2, . . . , pn such that 54 = pα1

1 pα2
2 . . . pαn

n .
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primes. Euler was not aware of this and assumed that domains like Z[
√
−5] obeyed

unique factorization. One of the more notable occasions in which this error was made

was in his proof of Fermat’s Last Theorem for n = 3.

In the proof, Euler relied on a lemma:

Lemma 2.2.1. Let p, q be prime numbers. If p2 + 3q2 is a cube then there exist

a, b ∈ Z such that p = a3 − 9ab2 and q = 3a2b− 3b3.

Euler’s proof of this lemma is based on the elegant but mistaken corollary of

unique factorization that if (x + y
√
−3)(x− y

√
−3) is a cube and if (x + y

√
−3) and

(x−y
√
−3) are relatively prime—that is, have only 1 or−1 as common divisors—then

(x+y
√
−3) and (x−y

√
−3) are also cubes. To illustrate this corollary, consider it in

Z, (or, if you’re game, in any system where the fundamental theorem of arithmetic

holds):

Proof. Suppose we have a cube c3 for some c ∈ Z. And suppose that c3 = ab for

some a, b ∈ Z. The claim is that if a and b are relatively prime then a = r3 and

b = s3 for some r, s ∈ Z. By the fundamental theorem of arithmetic,

c3 = pα1
1 pα2

2 . . . pαn
n .

Since c ∈ Z, by the FToA again c = qβ1

1 qβ2

2 . . . qβm
m , which implies that

c3 = pα1
1 pα2

2 . . . pαn
n = q3β1

1 q3β2

2 . . . q3βm
m .

Since these expansions are unique it follows that n = m, pi = qi (after rearrangement,

which the FToA allows) and each αi is a multiple of 3. Since c3 = ab, by the FToA,

ab must also be the product of primes with powers divisible by 3. Ex hypothesi, a

and b have no common prime factor; thus, allowing rearrangement,

a = p3β1

1 p3β2

2 . . . p
3βj

j b = p
3βj+1

j+1 . . . p3βn
n .

Therefore, a and b are each the product of primes with powers divisible by 3 and so

are cubes, as required. �
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The proof is fairly simple to understand, even if it does require some subscripts

on superscript text. The crucial aspect of the proof is the reliance on the uniqueness

element of the FToA. Without it, the proof fails and a and b need not be cubes.

So Euler’s proof was wrong. According to (3, p. 45), a “reasonable speculation

about this erroneous proof is that his original method used a less imaginative [but

logically sound] argument to prove . . . [the lemma], and that it was only later that

he had the elegant—but wrong—idea of proving this by using [unique factorization

in Z[
√
−3]”.

2.2.2 Lamé

Another more spectacularly incorrect proof concerning Fermat’s Last Theorem was

by Gabriel Lamé (1795 – 1870). This was more spectacular partly because the proof

was unsalvageable (he tried to cross an uncrossable part of the river, whereas Euler

just picked the wrong stepping stone) but also because it was a proof for all n ≥ 3

and not just for a particular n.

His proof, too, relied on unique factorization. The synopsis of the proof is as

follows:(10, p. 5)

(1) Suppose xn + y=zn has an integer solution.

(2) We can factorize the left-hand side of xn + yn = zn as

(x + y)(x + ζy) . . . (x + ζn−1y) = zn.

where ζ is an n-th root of unity, ζ = e2πi/n.

(3) The factors x + y, x + ζy, . . . , x + ζn−1y are relatively prime. Therefore, there
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must be distinct elements u1, . . . , un, in what we now call Z[ζ] such that

x + y = un
1

x + ζy = un
2

...

x + ζn−1y = un
n

Since each of the factors are relatively prime, each of the un
i must be relatively

prime, a contradiction, since this leads to an infinite descent.

Lamé presented a proof of Fermat’s Last Theorem based on this synopsis at the

Paris Academy in 1847. After he had made his presentation, Joseph Liouville (1809

– 1882) cast doubts on the problem. The gap, as he correctly pointed out it, was

that the proof depended on the uniqueness of factorization of the factors (and thus

the un
i ) and that this, while true in Z, was not obviously true in Z[ζ]. While most

present accepted the logical validity of Liouville’s argument, Lamé (and Cauchy, who

was in attendance) believed that this was not a fatal flaw in the proof.

2.2.3 Discussion

Central to this story is the reliance the mathematician places in his intuition. Euler

thought that Z[
√
−3] was enough like Z to justify the fundamental theorem of

arithmetic for Z[
√
−3]. For the question at hand, we have to ask: Is Euler’s error

typical of mathematics?

There are historical facts surrounding the faux pas that should be illuminated.

Firstly, Euler’s assertion that x3 + y3 = z3 has only the trivial solutions is correct.

Secondly, and more importantly, Euler had correctly proved that Z[
√
−3] was a

unique factorization domain in earlier works. So Euler may have elected not to focus

on the more subtle parts of a proof of a proposition he knew to be correct. However,

his repetition of the incorrect proof in later works (including textbooks) suggests

that he was unaware of the fallacy of the proof.
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There is some evidence that mathematicians in the early 19th century were aware

of the flaws in Euler’s proofs in his Anleitung zur Algebra (1770). Euler’s prominence

and almost heroic stature among mathematicians of the time meant, however, that

these criticisms were not published.

Though Lamé’s fall is perhaps more spectacular, it is less interesting for our

purposes because Liouville picked up on it almost immediately. Mathematics’ cu-

mulativeness is not inconsistent with mathematicians making errors: it is only when

their errors are accepted by the mathematics community that that thesis is vitiated.

Lamé accepted the criticism at once and, although he did not believe that the

proof was deeply flawed, his belief was not made with the force or conviction of

a mathematical assertion.

2.3 Geometry

Geometry comes from the Ancient Greek word geometria. geo-, ‘Earth’ + metria,

‘measure’. Its etymology is significant in an account of its history: geometry’s links

with the measurement of the universe were both its blood and its poison.

Geometry was initially a body of practical rules and experience for practical

engineering and construction work. The Elements by the Greek mathematician

Euclid (c. 300bc), of which geometry is a major part, is a canonical work in

geometry and pre-eminent in its success and influence as a textbook of mathemat-

ics. Euclid’s approach made the rules and practical knowledge theorems, rigorously

proven generalities using deductive logic from the axioms alone. These axioms were

uncontroversial and included the axiom that “any two points can be joined by a

straight line”. Thus, theorems that followed from these axioms were regarded as

absolutely true and mathematicians regarded Elements as “the model of rigor”.(4,

p. 1007) Isaac Barrow (1630 – 1677), an ardent defender of the geometry, gave

eight reasons to support geometry’s certitude: “the clearness of the concepts, the

unambiguous definitions, the intuitive assurance and universal truth of its axioms,

the clear possibility and easy imaginability of its postulates, the small number of its

axioms, the clear conceivability of the mode by which magnitudes are generated, the
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easy order of the demonstrations, and avoidance of things not known.”(4, p. 862)

The most compelling philosophical argument, however, came from Immanuel

Kant (1724 – 1808). In his Critique of Pure Reason (1781) he rejected Hume’s

empiricism and argued there are synthetic a priori truths. He maintained that

the human mind has intrinsic rules or modes for organizing the sensory inputs

coming from the real world. He called these modes intuitions. This explains

the popularity (or ubiquity) of mathematical objects: they are, in fact, prior to

experience. Kant explicitly gives (Euclidean) geometry as a body of knowledge that

is equivalent to these intuitions and their logical consequences—collectively called a

priori synthetic truths.

Now is not the time to discuss whether Kant’s account of a priori knowledge is

persuasive or whether his attack on Hume’s empiricism succeeds. What is important

from an historical perspective is that mathematicians and physicists considered

Kant’s defence of Euclidean geometry persuasive at the time it was written. Euclid-

ean geometry (together with Newtonian mechanics) was seen as equivalent to the

intuitions of space and time.

But there were problems, though most were unaware of them. As Kline puts

it in (4, p. 1007): “one should not rely on drawing a correct figure to determine

the location of [the interior of a triangle]. But that is precisely what Euclid and

mathematicians up to 1800 did.” and “Euclidean geometry was supposed to have

offered accurate proofs of theorems suggested intuitively by figures, but actually

it offered intuitive proofs of accurately drawn figures.” Yet the Elements “were

generally taken to be the model of rigor.” These criticisms of Euclid’s rigor in

his work are valid and serious, but most of his theorems were valid and his proofs

reparable. One proposition, however, has a dubious history and warrants special

mention.

2.3.1 Parallel postulate

A postulate, as opposed to a theorem, is something which is not a definition but

is considered self-evident and, as such, is introduced without proof. It is often

23



synonymous with axiom.∗ Euclid’s Elements Book 1 begins with 23 definitions (of

notions like point and line) and then sets the foundation with five postulates, the

first four of which are:

1. A straight line segment (or interval)

can be drawn by joining any two

points.

2. An interval can be extended

indefinitely in a straight line.

3. Given an interval, there exists a

circle whose centre lies on one

endpoint of the interval and whose

radius is the interval.

4. All right angles are congruent.

The parallel postulate is the fifth postulate in Euclid’s Elements. It roughly states

that any straight lines will intersect unless they are parallel.

If a line segment intersects two straight lines forming two interior angles

on the same side that sum to less than two right angles, then the two

lines, if extended indefinitely, meet on that side on which the angles sum

to less than two right angles.

Being a postulate, Euclid attempted no proof. Nevertheless, the parallel postulate

was not universally regarded as self-evident, though almost universally regarded as

true. Because of this, it was widely believed that the postulate could be derived from

the other four postulates.

The truth of the parallel postulate was widely believed and there are many other

statements which were certainly regarded as self-evident that are, in fact, equivalent

to the parallel postulate, including “squares exist” and “triangles can be big”.† These

statements are so intuitively obvious that many mistaken proofs were attempted in

proving the parallel postulate.

∗I would say that the difference is that an axiom is introduced either because it is self-evident
or to enact the governing laws of the domain it is axiomatizing, whereas a postulate is something
that is obviously true from experience. Einstein’s postulate that the speed of light is constant is a
famous example.

†More precisely, “there exists a quadrilateral whose interior angles are all right angles” and
“there is no upper limit to the area of a triangle”.
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Ptolemy attempted a proof from the other postulates and theorems. However,

his proof made too many assumptions, effectively begging the question. Proclus

(c. 411 – 485) was one of the last Classical philosophers. He thought that the

postulate should be deleted from the geometry as a postulate “for it is a theorem

involving many difficulties, . . . and it requires for the demonstration [proof] of it

a number of definitions as well as theorems, and the converse is actually proved

by Euclid himself as a theorem.”(as quoted in (4) on p. 864) In addition, he made

the observation that although two lines may converge upon each other, it does not

follow that they intersect at a (finite) point in the plane. For instance, the hyperbolas

formed by the graph of xy = ±1 converge but do not meet in the coordinate plane.

The most concerted effort to prove the postulate was made by Gerolamo Saccheri

(1667–1733). Nads̄ır-al-Dı̄n al-Tūs̄ı (1201–1274) and John Wallis (1616 – 1703) had

attempted to prove it before, but they assumed the intuitively obvious statements

that are equivalent to the postulate, effectively begging the question. Saccheri’s proof

went something like this:

Consider a quadrilateral ABCD with the angles A, B, C,D labelled cyclically.

Let ∠A = ∠B = 90◦ and let AC = BD. It easily follows that ∠C = ∠D. Now, if

∠C = ∠D = 90◦ then the parallel postulate is true. Suppose not. That is, suppose

that either ∠C and ∠D are acute or ∠C and ∠D are obtuse. Omitting the details,

in the case of ∠C and ∠D acute, he obtained a contradiction. In the second case,

he proved that if the parallel postulate was not true then two lines which do not

intersect will have their common perpendicular at ∞.

Though there was no real logical barrier to accepting this, Saccheri found it so

repugnant that he declared he had found a contradiction. He felt that Euclid’s

postulate had been proved, going so far as to write a book in his dying year entitled

Euclides ab Omni Naevo Vindicatus (Euclid Vindicated from All Faults).

However, Saccheri was wrong: the parallel postulate was not a logical consequence

of the other postulates.
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2.3.2 Non-Euclidean geometry

Non-Euclidean geometry arose from the realization that Euclid’s parallel postulate

was independent of the other postulates and thus could be removed and replaced

without threatening the internal consistency of the geometry. Georg Klügel (1739

– 1812) and Johann Heinrich Lambert (1727 – 1788) recognised that there can be

alternative geometries to Euclidean. Klügel, writing in his dissertation of 1763, wrote

that the “certain” quality afforded to Euclidean geometry is based on experience.

Lambert published a similar paper to Saccheri’s, but did not believe he had arrived

at any contradiction, just a result at odds with experience. Saccheri, though he did

not regard the consequences of his technique proper, nevertheless was instrumental in

the technical development of non-Euclidean geometry. However, it was Gauss (1777

– 1855) who had the most significant realization: that non-Euclidean geometry was

just as accurate in describing physical space as Euclid’s geometry was. In 1799,

having thought up until then that Euclidean geometry was the only true geometry,

he wrote to Bolyai and appeared to be sceptical that the parallel postulate was

dependent on the others and that other geometries (that is, statements that use

different postulates) were logically sustainable. He makes himself clear in his letter to

Olbers in 1817 (4, quoted in p. 872) that Euclidean geometry is no longer necessarily

the geometry of physics and that “we must place geometry not in the same class

with arithmetic, which is purely a priori, but with mechanics”.

Gauss realized that the parallel axiom was independent of the other axioms of

Euclidean geometry. Thus, it is possible to introduce a contradictory axiom without

inconsistency. He believed that this meant that Euclidean geometry was not the

geometry of physics and so was not in the same class as arithmetic. This was a

strange conclusion to draw, considering that arithmetic (and other equally rigorous

branches of mathematics like algebra and analysis) had no logical foundation and

were just as intuitive in their structure as geometry. That is not to say that

Gauss was wrong to segregate geometry from arithmetic, only that it is curious

he did not consider whether these other branches were equally artificial. Indeed,

“[t]he history of non-Euclidean geometry reveals in a striking manner how much
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mathematicians are influenced not by the reasoning they perform but by the spirit

of their times.”(4, p. 880) Saccheri had reached the same conclusions as Gauss,

Lobatchevsky, and Bolyai, but Saccheri rejected the conclusions as absurd whereas

GLB accepted them. The consistency of non-Euclidean geometry was never proved.

Bolyai and Lobatchevsky believed it “because their trigonometry was the same as for

a sphere of imaginary radius and the sphere is part of Euclidean geometry.”(4, p. 880)

This history also demonstrates that mathematicians were not motivated by their own

intellectual curiosity; they were not just crazily omitting axioms and seeing what the

machine spat out. The non-Euclidean geometries arose from the centuries of work

on the parallel axiom. Since Euclidean geometry was the canvas on which physics

developed its laws, mathematicians wanted to make sure their beloved physicists

were relying on truths.(4)

2.3.3 Discussion

If mathematics is cumulative then geometry is cumulative. Does the history of

geometry support the hypothesis that geometry is a cumulative branch? To begin

with, we consider a simpler question: is non-Euclidean geometry a contradiction of

Euclidean geometry or a mere addition to it?

To answer this sensibly, we need to understand that what is meant by ‘Euclidean

geometry’ now is different to what was meant before the 19th century. Quite under-

standably, in light of the history, there was no thought that Euclidean geometry was

a subset of some family of geometries. ‘Euclidean geometry’ was simply ‘geometry’,

and Euclid happened to have been the earliest extant axiomatization of it. Geometry

and Euclidean geometry were equivalent in mathematics. Thus, it is premature to

assert that non-Euclidean geometry is not a contradiction of Euclidean geometry

because they exist in independent logical frameworks, even if we believe (as I do)

that they do. It is premature because Euclidean geometry was believed to be the

only consistent geometry. So while the theorems of Euclidean geometry remained

while non-Euclidean geometry was founded, its axiology and the axiological matters

of fact in geometry were torn asunder. In particular, the idea that the theorems
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in (Euclidean) geometry were essential a priori truths about the physical world was

shown to be unfounded in the 19th century (and absolutely demolished in the 20th

by Einstein).

But were these “axiological matters of fact” part of mathematics? Kant’s phi-

losophy may have been popular among pre-Gaussian geometers, but did they think,

when they believed that Euclidean geometry was the geometry of space and time,

that they were doing mathematics, or merely remarking on aesthetics? In other

words, was the pure mathematics agnostic about the physical status of Euclidean

geometry?

No. Saccheri’s demonstration is telling. His misproof of the parallel axiom is

based on his aversion to the idea of a common perpendicular of two lines happening

at ∞. Yet this idea was not rejected by Gauss. The later acceptance of a theorem

is only evidence for cumulativeness if the mathematics’ community was agnostic or

unaware of the proposition beforehand. In this case, it was aware and it was rejected;

equivalently, a false theorem was accepted.

Perhaps Saccheri was logically repulsed by the theorem accepted by Gauss be-

cause he was working in the Euclidean domain? If he was, then he was confused,

because he was trying to establish whether the Euclidean domain was consistent,

and it would be begging the question to conclude that it was on the basis of itself. If

he were not working in the Euclidean domain, then his assertion is plain wrong and

the geometric corpus of knowledge is no longer cumulative.

The history of geometry shows that, up until the 20th century, the mathemat-

ical, axiological, and physical ideas from geometry were inheterogeneously mixed.

Geometers threw all the components in with each other and labelled physical facts

as mathematical theorems. They were confused. But confusion is not a defence here,

as it may have been with Cauchy’s fable, because they were not aware of the confusion

– indeed, they thought (thanks to Kant) that their bouillabaisse géometrique was

logically necessary.
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2.4 Number

God invented the integers. Everything else is the work of man.

Krönecker (1823 – 1891)

The history of numbers is the history of stubborn mathematicians. Today, it is

difficult to imagine why mathematicians were so reluctant to accept complex num-

bers, let alone real numbers or negative numbers and the number zero! Krönecker’s

oft-quoted salute to the constructed character of numbers could easily have been

a tongue-in-cheek reference to the sloth of Man’s acceptance of the higher number

systems.

2.4.1 Beyond N

Greece

Two of the prominent schools of mathematics were the Pythagorean school and the

School of Eudoxus.

The Pythagoreans were concerned with natural numbers only. They were familiar

with fractions of natural numbers (the rational numbers) as these were common in

commerce and engineering, but these were considered “labourers’ tools”, and so

beneath the Pythagoreans. Finding order in the universe was part of the Pythagore-

ans’ ideology and it coloured how they did mathematics. Their antipathy towards

non-natural numbers, combined with the profound mysticism of the school, led to

some strange consequences. The legend of Hippasus discovery that
√

2 was arrhtoc

(“irrational” in today’s terminology) being treated as heretical and being thrown

overboard is probably apocryphal, but is a useful illustration of the Pythagorean

ideals. To be accurate, Pythagoreans accepted that
√

2 was irrational, but would

not accept such magnitudes as “numbers”.

The School of Eudoxus introduced the notion of magnitudes to resolve the prob-

lem of incommensurability. Magnitudes were not numbers but stood for entities and

could vary continuously. Euclid mentions magnitudes in fifth book of Elements. But
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neither Euclid nor Eudoxus gave any formal axiomatization of the operations on

magnitudes and it is not clear whether they allowed operations on magnitudes.

Hindu-Arabic mathematics

The simplest irrational numbers are the algebraic integers that are solutions to

quadratic equations: such as
√

2 or
1 +

√
5

2
. Hindu mathematicians started to be

comfortable with operating with surds using correct procedures, and in the 12th

century Bhāskara developed the following rule.

√
a +

√
b =

√
(a + b) + 2

√
ab ((4, p.185))

The distinction between the Greeks and the Hindus was that the Greeks were more

dogmatic and exclusive, whereas the Hindus were less sophisticated in accepting rules

by analogy without any logical justification for why these rules held. Nevertheless,

their work and persistence allowed mathematics to progress (though things may have

turned out differently if they had been wrong).

The Islamic mathematicians Omar al-Khayyami (c. 1048–1122) and Nads̄ır-al-

Dı̄n al-Tūs̄ı (1201–1274) declared separately that every commensurable or incom-

mensurable ratio may be called a number. “It is fairly certain that the Hindus did

not appreciate the significance of their own contributions. The few good ideas they

had, such as separate symbols for the numbers from 1 to 9, the conversion to base

10, and negative numbers, were introduced casually with no realization that they

were valuable innovations.”(4, p. 190) The key shifts from the Greek tradition to the

Hindu-Arabic system of arithmetic was the acceptance of irrational numbers and the

emphasis on arithmetic, rather than geometry, in algebra. Further, while the Hindus

did use negative numbers, they were initially suspicious of them. For instance, if a

problem had two distinct solutions—a positive number and a negative number—the

positive number was regarded as more correct.
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16th-17th Centuries

Around the end of the 15th century, zero was accepted as a number.(4, p. 251)

And irrational numbers were used without hesitation. François Viéte (1540–1603)

discovered and proved the infinite product

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +

√
2

2
. . .

showing too how accepted irrational numbers had become.(12)

Even so, the club of numbers was still quite exclusive. Wallis in his Arithmetica

Infinitorum (1655) argued that since a/b grows larger and larger as b becomes smaller,

and since a/0 is infinite, a/b must be larger than infinity when b is smaller than zero

(i.e. negative). Even Euler made a similar faux pas. Antione Arnauld a 17th century

theologian and mathematician questioned the existence of negative numbers. He said

(correctly) that they led to the identity −1 : 1 = 1 : −1. Yet how could the ratio

of a lesser to a greater be the same as the greater to the lesser? A contradiction.(4,

p. 252)

The utility of irrationals was evident, but for them too there was still dispute over

whether they were truly numbers. Michael Stifel (1486/87 – 1567), an Augustinian

monk, argued in his Arithmetica Integra (1544) that because irrational numbers have

an infinite decimal expansion with no repetitive structure and since “that cannot

be called a true number which . . . lacks precision”, irrational numbers are not

numbers.(4, p. 251) Today, irrational numbers can be made precise in R through

equivalence classes of Cauchy sequences.∗

18th Century

By 1700, the elements of N, Z, Q, R, C were known. Yet still, there was opposition to

these numbers, even negative numbers were occasionally persecuted. Quoth English

mathematician Baron Francis Masères:

∗For an easily accessible article, see “Construction from Cauchy sequences” in http://en.
wikipedia.org/wiki/Construction of the real numbers, accessed 12 November 2008.
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. . . they [negative roots of polynomial equations] serve only . . . to puz-

zle the whole doctrine of equations. . . . It were to be wished therefore

that negative roots had never been admitted into algebra or were again

discarded from it[.]

19th century

While irrational numbers were accepted and used without hesitation in all of the 19th

century, there were still gaps in mathematicians’ knowledge. Before Weierstrass,

irrational numbers were regarded as the limit of an infinite sequence of rational

numbers. However, this limit is not well-defined unless the limit is defined in a set

containing irrationals and rationals. Cantor recognised this flaw and presented a

solution. Cantor’s solution (Math. Ann., 5, 1883, 545-591) was to invent R, the set

of real numbers which contain all the rational and irrational numbers. He defined R
to be (in modern terminology) a complete, ordered field. In this context, complete

means that every Cauchy sequence converges. Equivalently, it means that every

nonempty subset of R with an upper bound has a least upper bound. This is what

distinguishes R from Q. Consider the set of all rational numbers less than
√

2. This

is certainly a nonempty subset of R with an upper bound (for instance, 1000 is bigger

than all of the numbers). But there is no least upper bound.

2.4.2 Into C

The complex numbers are numbers of the form a+ bi where a and b are real numbers

and i =
√
−1. The square root of negative one is a difficult concept to understand

even today: if you have a simple calculator and try to extract the square root

of negative one, it will complain in the form of an error message! Yet they are

extremely useful both within mathematics and in other scientific disciplines. The fact

that complex numbers were originally considered impossible or literally “imaginary”,

but today have so much utility both in pure and applied mathematics can only be

regarded as a miracle.

Today, the complex numbers are introduced by declaring the necessity of all
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Figure 2.2: The parabola y = x2 and the line y = −1. The imaginary
solution x = i to the equation x2 = −1 is the point at which the
parabola and the line intersect. The pre-Classical mathematicians only
ever encountered quadratic equations that had only complex solutions
in geometrical problems like these. Since there is no solution to the
geometrical problem, mathematicians saw no need to invent C.

quadratic equations such as x2 + 1 = 0 to have solutions. But this rhetoric, though

it is undoubtedly a clear pedagogical device, was not persuasive in the history

of algebra to convince mathematicians to employ them. The reason behind this

apparent stubbornness was that geometry was the usual source of problems involving

quadratic equations. A typical problem might be the intersection points of curves

of conic sections and straight lines. Since there may be no intersection points (a

problem corresponding to the equation x2 + 1 = 0 is shown in figure 2.2), there

was no need to look deeper for solutions. The mathematical problems which did

motivate the beginning of acceptance of complex numbers were those involving cubic

equations such as

y3 = py + q.

The solution to this equation was developed by Niccolo Tartaglia and Gerolamo

Cardano.

y =
3

√
q

2
+

√(q

2

)2

−
(p

3

)3

+
3

√
q

2
−

√(q

2

)2

−
(p

3

)3

.
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This solution involves complex numbers since p, q are arbitrary.(11, p. 257) This

was known immediately and mathematicians began to experiment more with these

strange numbers.

Descartes, in response to the growing use of complex numbers drew a clear

distinction between real and imaginary roots of equations: real roots (even negative

roots) are admissible because the equation can be transformed into one in which the

roots are positive (and so more coherent when dealing with concepts like distance

and duration) whereas complex roots do not have such a transformation, so they are

not real (true) numbers but imaginary (fictitious) numbers.

Newton did not regard complex numbers as significant, because of their irrel-

evance to the physical problems he was concerned with. Though Leibniz worked

with complex numbers (for instance in the reduction of imaginary expressions to real

form), he professed no deep understanding of the operations governing them.(7) The

muddiness and mystical curiosity involved in the European experience with complex

numbers is illustrated by the passage by Liebniz:

“The Divine Spirit found a sublime outlet in that wonder of analysis, that

portent of the ideal world, that amphibian between being and non-being,

which we call the imaginary root of negative unity.” (4, p. 254)

Indeed, the Europeans “blundered” into complex numbers.(4, p. 253) One of the

common mistakes was to apply surd rules to complex numbers (as the Hindus had

to irrational numbers). For instance, a rule of surds says that
√

a
√

b =
√

ab. But to

use this rule in C would imply that

−1 = (
√
−1)2 =

√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1

and so −1 = 1. It is therefore with no surprise that some rejected complex numbers

outright: Bombelli regarded the rules of operation governing complex addition,

subtraction, multiplication, which are accepted today, as not merely useless but

“sophistic”.
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2.4.3 Discussion

Numbers are what we as children were first introduced to in our mathematical

education. So it may seem a bit contrary to question whether the concept of

“number” is a mathematical concept. However, questioning whether the various

idealizations of “number” were mathematical is not the same as questioning whether

numbers are mathematical. What is important is how mathematicians have talked

about numbers. Even today, the branch of mathematics called “number theory”

deals almost exclusively with integers and prime numbers, yet we accept number

systems as far removed from Z as the complex and hypercomplex numbers.

Again, as with our discussion on geometry, we have to distinguish between

mathematicians’ thoughts on mathematics and their submissions of statements to the

body of knowledge of mathematics. When, say, Baron Francis Masères said he wished

that negative roots of polynomial equations had never been admitted into algebra,

we have to decide whether he is declaring as a mathematician that negative roots are

not allowed, or merely expressing his taste. In contrast to geometry, I believe that

mathematicians were indeed just making aesthetic judgements and did not believe

that their statements were in the same class as arithmetic statements. Alternatively,

even when their thoughts were expressed with the hope of changing mathematics,

their attitude was one of caution in the face of new numbers, rather than denying their

existential possibility. This attitude is typically mathematical and does not deny

mathematics a cumulative character. That is, mathematicians’ apparent discontent

with negative numbers, with irrational numbers, and with complex numbers, was

not because they believed that these new numbers were logically invalid, but rather

because they were unsure how to use them safely in mathematical proofs.

The Hindus’ confidence with surds and their assuredness in using irrational num-

bers in the same way as rational numbers was a fluke, and any similar bravado by a

mathematician nowadays would be struck down as non-rigorous. Indeed, the identical

application of those rules to C was unsound. The general respect for cautiousness that

we have described, whether from fanatical Pythagoreans or Bombelli, was probably
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justified, even though the expression of this respect was misplaced.†

Nevertheless, while the body of knowledge concerned with numbers may have re-

mained cumulative throughout the extension of the number systems, the motivating

and persuasive forces involved were not the ones a normative account of mathematics

would suggest, i.e. deductive validity. That is, although mathematics was cumulative

in this chronology, in the sense that it only accepted a statement’s truth when that

statement’s truth was not later vitiated, it was, perhaps, cumulative for the wrong

reasons. This is the distinction between “properly cumulative” and other notions of

cumulative that was made before our history took place.

Furthermore, it is to defend too much Descartes when he makes qualitative judge-

ments discriminating against ‘imaginary’ solutions to equations. And it was certainly

wrong to say that solutions outside a contemporaneously fashionable number system

are invalid. It is, at best, very confused thinking to accept the logical validity of a

solution but to exclude it from answers. True, often the problem was connected to

some physical system where negative or imaginary solutions were not relevant; my

criticism is that mathematicians denied these solutions when no physical system was

in play.

Thus, in the case of number theory, while it may have been cumulative in the

sense of “strictly cumulative” it was not “properly cumulative”.

†The author is not suggesting Musean hypernumber theorists be executed.
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Chapter 3

Conclusion

Mathematics is certainly not strictly cumulative

Mathematics is not strictly cumulative because there have been theorems in the

history of mathematics that have been vitiated. It does not really matter how

we determine whether a theorem has been accepted or not by the mathematical

community. In Cauchy’s case, it almost certainly had been, by any measure. As

discussed, Cauchy’s false proof cannot be attributed to a definition that is unusually

or obviously ambiguous. The mathematics of today is not markedly different to the

mathematics that Cauchy studied and contributed to. The other episodes in history

that we have seen illustrate that mathematics is not, in its entirety, a cumulative

body of knowledge, in any meaningful sense.

This may seem a harsh conclusion and deserves some discussion.

37



Chapter 4

Discussion

Many questions remain. Two of the most important that come to mind are “Is

it possible to change mathematics so that it can be cumulative?” and “Although

mathematics is not strictly cumulative, why is so much of it strictly cumulative?”.

For reasons of space, I will not attempt answers to these questions, but will finish by

posing a question that ought to be answered before the others.

4.1 Why do we think mathematics is cumulative?

We have concluded that mathematics is not cumulative in any strong sense of the

word. But why would we think mathematics to be cumulative in the first place?

There are several reasons why mathematics is regarded as such:

Mathematics is based on deductively valid tools Ayer’s remark that math-

ematics is tautological is shared by many who have an opinion on this subject.

Mathematics is true because mathematics is true. The reason why mathematics is

regarded as cumulative is because the parts of mathematics that have been shown

to be flawed are ipso facto not parts of mathematics. The question-begging is not

egregious, however, because similar fallacies are used to “justify” deductive logic.
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The core mathematics is the first taught We are not taught, from the outset,

controversial mathematical ideas. Our mathematical education begins with the

tried-and-tested mathematical theorems. Not even in undergraduate education are

students exposed to anything controversial. We are taught the strictly cumulative

core of the weakly cumulative mathematics, to use my terminology.

Bad theorems have gone In physics and astronomy, it has been noted that if

the fundamental constants of the universe had slightly different values the unverse

would be radically different. For instance, if the strong nuclear force, the force that

holds quarks and gluons together to form protons and neutrons, were a mere 2%

stronger, the nature of nuclear fusion, which powers the stars, would alter stellar

physics—and thus the nature of life—dramatically. The moral of this observation is

that the universe appears to have been specially-adjusted to support life on Earth. A

response to this amazement might be to attribute the universe’s fine-tuning to God.

Another response is the anthropic principle, which argues that humans should not

be suprised at this apparent fine-tuning, for if the constants were so different that

life could not exist, life could not have existed, and we would not be around to be

astounded by it.

An analogy can be drawn between this view and a historical view of mathematics:

we judge the veracity and rigor and robustness of theorems in mathematics by what

remains; all the deductively invalid mathematics has not survived, and we are left

astounded by how deductively valid mathematics has always been!
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Glossary

C

C The set of all numbers a + bi where a, b are real numbers and i =
√
−1.

F

FToA The fundamental theorem of arithmetic, which states that every

natural number greater than 1 can be expressed uniquely as the product

of primes, up to rearrangement.

N

N the (set of) natural numbers; the positive integers; the set {1, 2, 3, . . . };
the counting numbers.

Q

Q the rational numbers; the set of all numbers r = p/q where p, q are

integers.

R

R the real numbers; the unique complete Archimedean ordered field; the

union of the rational numbers and the irrational numbers.
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Z

Z the set of integers; the union of zero and N with its additive inverses; the

set {. . . ,−2,−1, 0, 1, 2, . . . }.

Z[
√
−d] = Z[δ] the ring consisting of the subset of C of all numbers a+b

√
−d where

a, b ∈ Z.
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Appendix A

Everywhere continuous nowhere

differentiable function

This appendix illustrates the example of the function at equation 2.1 on page 14

that is everywhere continuous but nowhere differentiable, discovered by Weierstrass

in the 19th century. Everywhere continuous means (for a function f : R → R),

roughly speaking, that its graph can be drawn with a pencil from left to right without

the pencil leaving the page. Nowhere differentiable means that the graph does

not have a definite slope at any point. A moment’s pause will illuminate why these

characteristics of a graph seemed mutually exclusive to the mathematicians of the

early 19th century.

On the following page, the graph of

fN(x) =
N∑

n=1

1

2n
cos(3nx)

is shown for increasing N . The everywhere continuous but nowhere differentiable

function is the (well-defined) limit of these functions as N →∞.
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Figure A.1: The graphs of fN (x) for various increasing N on [−π, π]. For small N , the
graphs are smooth. As N → ∞, the graphs become gnarlier and approach the nowhere
differentiable function while remaining continuous everywhere.
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Appendix B

Euler’s proof of Fermat’s Last

Theorem for n = 3

The proof went as follows:(3, p. 40)

Assume w.l.o.g. that x, y, z are relatively prime. Suppose that x, y are

odd and z is even. Then x + y and x − y are both even, say 2p and 2q

respectively, with

x =
1

2
(2p + 2q) = p + q y =

1

2
(2p− 2q) = p− q.

When x3 + y3 = (x + y)(x2 − xy + y2) is expressed in terms of p and q it

becomes:

2p
[
(p + q)2 + (p + q)(p− q) + (p− q)2

]
= 2p(p2 + 3q2).

Here p and q are of opposite parities—because p + q and p− q are odd—

and they are relatively prime because any factor they had in common

would divide both x = p + q and y = p − q, and therefore could only

be 1. Moreover, p and q can both be assumed to be positive. (If x < y

then x and y can be interchanged to give q > 0. The case x = y is

impossible because x, y, z are relatively prime and there is no cube root
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of 2.) Therefore, if x3 + y3 = z3 with x, y both odd then there exist

relatively prime positive integers p, q of opposite parity such that

2p(p2 + 3q2) = cube.

The same conclusion can be reached if z is odd and x or y is even. In

this case, the odd one, say y3, can be moved to the left side

x3 = z3 − y3 = (z − y)(z2 + zy + y2).

Then z − y = 2p, z + y = 2q, z = q + p, y = q − p, and

x3 = 2p
[
(q + p)2 + (q + p)(q − p) + (q − p)2.

]
which leads to the same conclusion

2p(p2 + 3q3) = cube.

where p, q are relatively prime positive integers of opposite parity.

The next step in the argument is roughly to say that 2p and p2 + 3q2 are

relatively prime and to conclude that the only way that their product can

be a cube is for each of them separately to be a cube. . . . However, the

statement that 2p and p2 + 3q2 are relatively prime is not quite justified.

Since p and q have opposite parity, p2+3q2 is odd and any common factor

of 2p and p2 + 3q2 would be a common factor of p and p2 + 3q2 and thus

a common factor of p and 3q2. Since p and q are relatively prime, this

implies that the only possible common factor is 3. But if 3 | p then clearly

it also divides p2+3q2 and 2p, p2+3q2 are not relatively prime. The proof

therefore splits into two cases, the one in which 3 does not divide p and

consequently 2p, p2 + 3q2 are relatively prime, and the other in which 3

does not divide p. The first of these two cases will be considered first and

the second will be treated as a simple modification of the first.
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Assume therefore that 3 does not divide p and that 2p and p2 + 3q2 are

consequently both cubes. Using the formula,

(a2 + 3b2)(c2 + 3d2) = (ac− 3bd)2 + 3(ad + bc)2

. . . one can find cubes of the form p2 + 3q2 by writing

(a2 + 3b2)3 = (a2 + 3b2)
[
(a2 − 3b2)2 + 3(2ab)2

]
=

[
a(a2 − 3b2)− 3b(2ab)

]2
+ 3

[
a(2ab) + b(a2 − 3b2)

]2

= (a3 − 9ab2)2 + 3(3a2b− 3b3)2.

That is, one way to find cubes of the form p2 + 3q2 is to choose a, b at

random and to set

p = a3 − 9ab2 q = 3a2b− 3b3

so that p2 +3q2 = (a2 +3b2)3. The major gap to be filled in Euler’s proof

is the proof that this is the only way that p2 + 3q2 can be a cube; that

is, if p2 + 3q2 then there must be a, b such that p and q are given by the

above equations. Euler bases this conclusion on the fallacious [and bold]

argument that Z[
√
−3] is essentially the same as Z. However, he could

have used results in his other works to prove the results. Assuming this

conclusion, nevertheless, the proof continues:

The expressions for p and q can be factored

p = a(a− 3b)(a + 3b) q = 3b(a− b)(a + b)

Of course, a and b are relatively prime because any factor they had

in common would also divide both p and q contrary to assumption.

Moreover,

2p = 2a(a− 3b)(a + 3b) = cube.
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The parities of a and b must be opposite because otherwise p and q

would both be even. Therefore a− 3b, a + 3b are both odd and the only

possible common factor of 2a, a±3b are both odd and therefore of a,±3b.

Similarly, any common factor of a + 3b and a− 3b would be a factor of a

and of 3b. In short, the only possible common factor is 3. But 3 does not

divide a because if it did it would be divide p, contrary to assumption.

Therefore, 2a, a−3b, a+3b are relatively prime and all three of them must

be cubes, say 2a = α3, a− 3b = β3, a + 3b = γ3. Then β3 + γ3 = 2a = α3

and thus gives a solution of x3 + y3 = z3 in smaller numbers than the

original solution.

More specifically, α3β3γ3 = 2a(a − 3b)(a + 3b) = 2p, which is positive

and a divisor of z3 is z is even and a divisor of x3 if x is even. In any

case, then, α3β3γ3 is less than z3. There is nothing to prevent α, β, or

γ from being negative, but since (−α3) = −α3, negative cubes can be

moved to the opposite side of he equation to become positive cubes and

the resulting equation is of the form X3 + Y 3 = Z3 in which X,Y, Z are

all positive and Z3 < z3. Therefore, the descent has been accomplished

in the case where 3 - p.

Consider finally the case 3 | p. Then p = 3s, say, and 3 does not divider

q. Then 2p(p2 +3q2) = 32 · 2s(3s2 + q2). The numbers 32 · 2s and 3s2 + q2

are easily seen to be relatively prime, and therefore both of them are

cubes. By the lemma to be proved [later in the text], 3s2 + q2 can be a

cube only if

q = a(a− 3b)(a + 3b) s = 3b(a− b)(a + b)

for some integers a, b. Since 32 · 2s is a cube, 33 · 2b(a− b)(a+ b) is a cube

and therefore 2b(a− b)(a + b) is a cube. The factors are easily seen to be

relatively prime, 2b = α3, a− b = β3, a + b = γ3, α3 = 2b = γ3 − β3 and

an equation of the form X3 + Y 3 = Z3 with Z3 < z3 can be derived, all

exactly as before.
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In any case, then the existence of a cube which was the sum of two cubes

would imply the existence of a smaller cube of the same type and is

therefore impossible. All that remains to be done in order to complete

this proof is to show that if p and q are relatively prime integers such

that p2 + 3q2 is a cube then there must be integers a and b such that

Rp = a3 − 9ab2 and q = 3a2b − 3b3. [This is completed later in the text

and is omitted here.]
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